Splash Screen.

Slides:



Advertisements
Similar presentations
Splash Screen.
Advertisements

CCSS Content Standards G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–3) CCSS Then/Now New Vocabulary Key Concept:Slope-Intercept Form Example 1:Write an Equation.
Welcome to Interactive Chalkboard Glencoe Geometry Interactive Chalkboard Copyright © by The McGraw-Hill Companies, Inc. Developed by FSCreations, Inc.,
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 10–7) Then/Now New Vocabulary Key Concept: Standard Form, Equation of a Circle Example 1:Write.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 10–7) CCSS Then/Now New Vocabulary Key Concept: Equation of a Circle in Standard Form Example.
Equations of Circles. Example 1: a) Write the equation of the circle with a center at (3, –3) and a radius of 6. (x – h) 2 + (y – k) 2 = r 2 Equation.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 10–7) CCSS Then/Now New Vocabulary Key Concept: Equation of a Circle in Standard Form Example.
Lesson 8 Menu 1.Use the figure to find x. 2.Use the figure to find x. 3.Use the figure to find x.
Write an Equation Using the Center and Radius A. Write the equation of the circle with a center at (3, –3) and a radius of 6. (x – h) 2 + (y – k) 2.
Splash Screen. Then/Now You graphed points on the coordinate plane. (Lesson 0–2) Find the distance between two points. Find the midpoint of a segment.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 10–7) NGSSS Then/Now New Vocabulary Key Concept: Standard Form, Equation of a Circle Example.
Then/Now You wrote equations of lines using information about their graphs. Write the equation of a circle. Graph a circle on the coordinate plane.
Equations of Circles LESSON 10–8. Lesson Menu Five-Minute Check (over Lesson 10–7) TEKS Then/Now New Vocabulary Key Concept: Equation of a Circle in Standard.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Warm-Up Find the values of x and y..
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Five-Minute Check (over Lesson 1–3) Mathematical Practices Then/Now
Splash Screen.
Splash Screen.
Evaluate each expression.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Five-Minute Check (over Lesson 11–2) Then/Now New Vocabulary
Splash Screen.
Students will be able to find midpoint of a segment
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Splash Screen.
Perpendiculars and Distance
Five-Minute Check (over Chapter 10) Then/Now New Vocabulary
9.3 Graph and Write Equations of Circles
Splash Screen.
Splash Screen.
LESSON 10–8 Equations of Circles.
LESSON 10–8 Equations of Circles.
Objectives Write equations and graph circles in the coordinate plane.
Objectives Write equations and graph circles in the coordinate plane.
Splash Screen.
Five-Minute Check (over Chapter 9) Mathematical Practices Then/Now
Five-Minute Check (over Lesson 9–6) Mathematical Practices Then/Now
Mathematical Practices
Five-Minute Check (over Lesson 9–7) Mathematical Practices Then/Now
Presentation transcript:

Splash Screen

Five-Minute Check (over Lesson 10–7) CCSS Then/Now New Vocabulary Key Concept: Equation of a Circle in Standard Form Example 1: Write an Equation Using the Center and Radius Example 2: Write an Equation Using the Center and a Point Example 3: Graph a Circle Example 4: Real-World Example: Use Three Points to Write an Equation Example 5: Intersections with Circles Lesson Menu

Find x. A. 1 B. 2 C. 3 D. 4 5-Minute Check 1

Find x. A. 1 B. 2 C. 3 D. 4 5-Minute Check 2

Find x. A. 2 B. 4 C. 6 D. 8 5-Minute Check 3

Find x. A. 10 B. 9 C. 8 D. 7 5-Minute Check 4

Find x in the figure. A. 14 B. C. D. 5-Minute Check 5

Mathematical Practices 2 Reason abstractly and quantitatively. Content Standards G.GPE.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. G.GPE.6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio. Mathematical Practices 2 Reason abstractly and quantitatively. 7 Look for and make use of structure. CCSS

You wrote equations of lines using information about their graphs. Write the equation of a circle. Graph a circle on the coordinate plane. Then/Now

compound locus Vocabulary

Concept

(x – h)2 + (y – k)2 = r 2 Equation of circle Write an Equation Using the Center and Radius A. Write the equation of the circle with a center at (3, –3) and a radius of 6. (x – h)2 + (y – k)2 = r 2 Equation of circle (x – 3)2 + (y – (–3))2 = 62 Substitution (x – 3)2 + (y + 3)2 = 36 Simplify. Answer: (x – 3)2 + (y + 3)2 = 36 Example 1

B. Write the equation of the circle graphed to the right. Write an Equation Using the Center and Radius B. Write the equation of the circle graphed to the right. The center is at (1, 3) and the radius is 2. (x – h)2 + (y – k)2 = r 2 Equation of circle (x – 1)2 + (y – 3)2 = 22 Substitution (x – 1)2 + (y – 3)2 = 4 Simplify. Answer: (x – 1)2 + (y – 3)2 = 4 Example 1

A. Write the equation of the circle with a center at (2, –4) and a radius of 4. A. (x – 2)2 + (y + 4)2 = 4 B. (x + 2)2 + (y – 4)2 = 4 C. (x – 2)2 + (y + 4)2 = 16 D. (x + 2)2 + (y – 4)2 = 16 Example 1

B. Write the equation of the circle graphed to the right. A. x2 + (y + 3)2 = 3 B. x2 + (y – 3)2 = 3 C. x2 + (y + 3)2 = 9 D. x2 + (y – 3)2 = 9 Example 1

Step 1 Find the distance between the points to determine the radius. Write an Equation Using the Center and a Point Write the equation of the circle that has its center at (–3, –2) and passes through (1, –2). Step 1 Find the distance between the points to determine the radius. Distance Formula (x1, y1) = (–3, –2) and (x2, y2) = (1, –2) Simplify. Example 2

Step 2 Write the equation using h = –3, k = –2, and r = 4. Write an Equation Using the Center and a Point Step 2 Write the equation using h = –3, k = –2, and r = 4. (x – h)2 + (y – k)2 = r 2 Equation of circle (x – (–3))2 + (y – (–2))2 = 42 Substitution (x + 3)2 + (y + 2)2 = 16 Simplify. Answer: (x + 3)2 + (y + 2)2 = 16 Example 2

Write the equation of the circle that has its center at (–1, 0) and passes through (3, 0). A. (x + 1)2 + y2 = 16 B. (x – 1)2 + y2 = 16 C. (x + 1)2 + y2 = 4 D. (x – 1)2 + y2 = 16 Example 2

Write the equation in standard form by completing the square. Graph a Circle The equation of a circle is x2 – 4x + y2 + 6y = –9. State the coordinates of the center and the measure of the radius. Then graph the equation. Write the equation in standard form by completing the square. x2 – 4x + y2 + 6y = –9 Original equation x2 – 4x + 4 + y2 + 6y + 9 = –9 + 4 + 9 Complete the squares. (x – 2)2 + (y + 3)2 = 4 Factor and simplify. (x – 2)2 + [y – (–3)]2 = 22 Write +3 as – (–3) and 4 as 22. Example 3

With the equation now in standard form, you can identify h, k, and r. Graph a Circle With the equation now in standard form, you can identify h, k, and r. (x – 2)2 + [y – (–3)]2 = 22 (x – h)2 + [y – k]2 = r2 Answer: So, h = 2, y = –3, and r = 2. The center is at (2, –3), and the radius is 2. Example 3

Which of the following is the graph of x2 + y2 –10y = 0? A. B. C. D. Example 3

Understand You are given three points that lie on a circle. Use Three Points to Write an Equation ELECTRICITY Strategically located substations are extremely important in the transmission and distribution of a power company’s electric supply. Suppose three substations are modeled by the points D(3, 6), E(–1, 1), and F(3, –4). Determine the location of a town equidistant from all three substations, and write an equation for the circle. Understand You are given three points that lie on a circle. Plan Graph ΔDEF. Construct the perpendicular bisectors of two sides to locate the center, which is the location of the tower. Find the length of a radius. Use the center and radius to write an equation. Example 4

Use Three Points to Write an Equation Solve Graph ΔDEF and construct the perpendicular bisectors of two sides. Example 4

Use Three Points to Write an Equation The center, C, appears to be at (4, 1). This is the location of the tower. Find r by using the Distance Formula with the center and any of the three points. Write an equation. Example 4

Use Three Points to Write an Equation Answer: The location of a town equidistant from all three substations is at (4,1). The equation for the circle is (x – 4)2 + (y – 1)2 = 26. Check You can verify the location of the center by finding the equations of the two bisectors and solving a system of equations. You can verify the radius by finding the distance between the center and another of the three points on the circle. Example 4

AMUSEMENT PARKS The designer of an amusement park wants to place a food court equidistant from the roller coaster located at (4, 1), the Ferris wheel located at (0, 1), and the boat ride located at (4, –3). Determine the location for the food court. A. (3, 0) B. (0, 0) C. (2, –1) D. (1, 0) Example 4

Find the point(s) of intersection between x2 + y2 = 32 and y = x + 8. Intersections with Circles Find the point(s) of intersection between x2 + y2 = 32 and y = x + 8. Graph these equations on the same coordinate plane. Example 5

x2 + y2 = 32 Equation of circle. Intersections with Circles There appears to be only one point of intersection. You can estimate this point on the graph to be at about (–4, 4). Use substitution to find the coordinates of this point algebraically. x2 + y2 = 32 Equation of circle. x2 + (x + 8)2 = 32 Substitute x + 8 for y. x2 + x2 + 16x + 64 = 32 Evaluate the square. 2x2 + 16x + 32 = 0 Simplify. x2 + 8x + 16 = 0 Divide each side by 2. (x + 4)2 = 0 Factor. x = –4 Take the square root of each side. Example 5

Use y = x + 8 to find the corresponding y-value. Intersections with Circles Use y = x + 8 to find the corresponding y-value. (–4) + 8 = 4 The point of intersection is (–4, 4). Answer: (–4, 4) Example 5

Find the points of intersection between x2 + y2 = 16 and y = –x. Example 5

End of the Lesson