Section 5 – 3 Concurrent Lines, Medians, and Altitudes

Slides:



Advertisements
Similar presentations
Constructions Involving Circles
Advertisements

Section 1.5 Special Points in Triangles
5-3 Concurrent Lines, Medians, Altitudes
GEOMETRY HELP Warm Up 1) What is the difference between a perpendicular bisector and an angle bisector? 2) True or False: A segment bisects another segment.
Concurrent Lines Geometry Mrs. King Unit 4, Day 7.
Medians, Altitudes and Concurrent Lines Section 5-3.
Unit 5.
Geometry Unit 5: Triangle Parts.
5.3 - Concurrent Lines, Medians, and Altitudes
Day 4 agenda Go over homework- 5 min Warm-up- 10 min 5.3 notes- 55 min Start homework- 20 min The students will practice what they learned in the computer.
Chapter 5.3 Concurrent Lines, Medians, and Altitudes
Objectives To define, draw, and list characteristics of: Midsegments
5.3: Concurrent Lines, Medians and Altitudes Objectives: To identify properties of perpendicular bisectors and angle bisectors To identify properties of.
Unit 5 Notes Triangle Properties. Definitions Classify Triangles by Sides.
Points of Concurrency Where multiple lines, segments rays intersect, have specific properties.
Median and Altitude of a Triangle Sec 5.3
Section 5-3 Concurrent Lines, Medians, Altitudes SPI 32J: identify the appropriate segment of a triangle given a diagram and vs (median, altitude, angle.
Points of Concurrency Triangles.
Special Segments of Triangles
5.4 Medians and Altitudes A median of a triangle is a segment whose endpoints are a vertex and the midpoint of the opposite side. –A triangle’s three medians.
5-3 Bisectors in Triangles
Perpendicular Bisectors ADB C CD is a perpendicular bisector of AB Theorem 5-2: Perpendicular Bisector Theorem: If a point is on a perpendicular bisector.
Geometry B POINTS OF CONCURRENCY. The intersection of the perpendicular bisectors. CIRCUMCENTER.
Geometry Sections 5.1 and 5.2 Midsegment Theorem Use Perpendicular Bisectors.
Chapter 10 Section 3 Concurrent Lines. If the lines are Concurrent then they all intersect at the same point. The point of intersection is called the.
Points of Concurrency The point where three or more lines intersect.
Bisectors in Triangles Chapter 5 Section 3. Objective Students will identify properties of perpendicular bisectors and angle bisectors.
5.3: Concurrent Lines, Medians and Altitudes Objectives: Students will be able to… Identify properties of perpendicular bisectors and angle bisectors Identify.
Chapters 3.7 – 3.8 “Nothing in life is to be feared, it is only to be understood.” Marie Cure.
SPECIAL SEGMENTS OF TRIANGLES SECTIONS 5.2, 5.3, 5.4.
5.3 Concurrent Lines, Medians, and Altitudes Stand 0_ Can you figure out the puzzle below??? No one understands!
Homework Quiz. Warmup Need Graph Paper/Compass 5.3 Concurrent Lines, Medians, and Altitudes.
Section 5-3 Concurrent Lines, Medians, and Altitudes.
4.5 isosceles and Equilateral Triangles -Theorem 4.3: Isosceles Triangle theorem says if 2 sides of a triangle are congruent, then the angles opposite.
Chapter 5, Section 1 Perpendiculars & Bisectors. Perpendicular Bisector A segment, ray, line or plane which is perpendicular to a segment at it’s midpoint.
Geometry Sections 5.2 & 5.3 Points of Concurrency.
Medians, and Altitudes. When three or more lines intersect in one point, they are concurrent. The point at which they intersect is the point of concurrency.
Special lines in Triangles and their points of concurrency Perpendicular bisector of a triangle: is perpendicular to and intersects the side of a triangle.
Chapter 5: Relationships within Triangles 5.3 Concurrent Lines, Medians, and Altitudes.
Unit Essential Question: How do you use the properties of triangles to classify and draw conclusions?
Bisectors, Medians, and Altitudes
5-4 Medians and Altitudes
5-3 Concurrent Lines, Medians, and Altitudes
Chapter 5 Lesson 3 Objective: To identify properties of medians and altitudes of a triangle.
Medians, Altitudes and Perpendicular Bisectors
Relationships in Triangles
Special Segments in a Triangle
Triangle Centers Points of Concurrency
Transformations Transformation is an operation that maps the original geometric figure, the pre-image , onto a new figure called the image. A transformation.
You need your journal The next section in your journal is called special segments in triangles You have a short quiz.
Medians and Altitudes of a Triangle
Vocabulary and Examples
If we use this next year and want to be brief on the concurrency points, it would be better to make a table listing the types of segments and the name.
Bisectors, Medians and Altitudes
Concurrent Lines, Medians, Altitudes
Relationships in Triangles
Section 5.1.
5.4 Use Medians and Altitudes
Centroid Theorem By Mario rodriguez.
Section 5-3 Concurrent Lines, Medians, and Altitudes.
Points of Concurrency Lessons
Section 6.6 Concurrence of Lines
5.3 Concurrent Lines, Medians, and Altitudes
Objectives: To define points of concurrency in triangles
5.3 Concurrent Lines, Medians, and Altitudes
DO NOW Complete the 4 problems at the top of your worksheet.
Bisectors, Medians, and Altitudes
Warm Up– in your notebook
Section 5-3 Concurrent Lines, Medians, and Altitudes.
concurrency that we will be discussing today.
Presentation transcript:

Section 5 – 3 Concurrent Lines, Medians, and Altitudes Objectives: To identify properties of perpendicular bisectors and angle bisectors To identify properties of medians and altitudes of triangles

Concurrent: Point of Concurrency: When three or more lines intersect in one point. Point of Concurrency: The point at which concurrent lines intersect.

Theorem 5 - 6 The perpendicular bisector of the sides of a triangle are concurrent at a point equidistant from the vertices. Circumcenter of the Triangle: The point of concurrency of the perpendicular bisectors of a triangle.

Theorem 5 - 7 The bisectors of the angles of a triangle are concurrent at a point equidistant from the sides. Incenter of the Triangle: The point of concurrency of the angle bisectors of a triangle.

Point Q, R, and S are equidistant from the circumcenter, so the circle is circumscribed about the triangle. Point X, Y, and Z are equidistant from the incenter, so the circle is inscribed in the triangle.

Example 1 Finding the Circumcenter A) Find the center of the circle that you can circumscribe about ∆OPS.

B) Find the center of the circle that you can circumscribe about the triangle with vertices (0,0), (-8, 0), and (0, 6).

C) Find the center of the circle that circumscribes ∆XYZ.

Example 2 Real-World Connection A) The Jacksons want to install the largest possible circular pool in their triangular backyard. Where would the largest possible pool be located?

Textbook Page 259 – 260; #1 – 9 (USE GRAPH PAPER)

Median of a Triangle: A segment whose endpoints are a vertex and the midpoint of the opposite side

Theorem 5 - 8 The medians of a triangle are concurrent at a point that is two thirds the distance from each vertex to the midpoint of the opposite side. Centroid of the Triangle: The point of concurrency of the medians.

Example 3 Finding Lengths of Medians A) D is the centroid of ∆ABC and DE = 6. Find BD. Then find BE.

B) M is the centroid of ∆WOR, and WM = 16. Find WX.

Altitude of a Triangle: The perpendicular segment from a vertex to the line containing the opposite side.

Example 4 Identifying Medians & Altitudes A) B)

Theorem 5 - 9 The lines that contain the altitudes of a triangle are concurrent. Orthocenter of the Triangle: The point of concurrency of the altitudes.

Textbook Page 260; # 11 – 22