1600 1400 1200 1000 800 600 400 200 Area(10000Sq. mt) 0 200 400 600 800 1000 1200 1400 Population(1,00,000 people)
8 7 6 5 4 3 2 1 Log10[Area(10000Sq. mt)]] 0 1 2 3 4 5 6 7 Log10[Population(1,00,000 people)]
Players Cricket, C Hockey, H Naresh Rohan Ram Mahesh Ramesh Shyam Mohan Leela Sunita Suresh
Players Cricket, C Hockey, H Naresh Rohan Ram Mahesh Ramesh Shyam Mohan Leela Sunita Suresh
Leptokurtic Mesokurtic Platykurtic
0 1 2 3 4 5 6 7 8 9 10 11 12
5- 4- 3- 2- 1- -0.5 0 0.5 1 1.5 2
0 χ 2
Table Entry Table Entry z z
0.30 0.29 0.25 0.23 0.20 0.15 0.10 0.09 0.05 0.03 0.00 1 2 3 4 5 6 7 8 9 10
Settings/ Environment Observation Structure Participation Settings/ Environment Structured Unstructured Participation Non-Participation Natural Contrived Concealment Mode of Administration Disguised Undisguised Personal Mechanical Audit Content Analysis Direct Indirect
Objectivist / Quantitative Subjectivist / Qualitative Primary Data Objectivist / Quantitative Subjectivist / Qualitative Survey Data Observation Data Experimental Focus Group Interview Depth Interview Projective Techniques Personal Interview Telephonic Interview Mail Survey / Questionnaire
15 10 5 -5 -10 50 60 70 80 90 100
15 10 5 -5 -10 50 60 70 80 90 100
15 10 5 -5 -10 50 60 70 80 90 100
15 10 5 -5 -10 50 60 70 80 90 100
5 6 7 8 9 4 5 8 0 0 0 1 1 1 2 2 2 3 4 4 5 6 6 7 8 8 6 7 8 9
60 50 40 30 20 X (cm) Y(Kg) 60 40 70 55 78 90 57 Y (Weights in Kgs) 0 60 70 80 90 100 X (Heights in cms)
60 50 40 30 20 0 60 70 80 90 100
60 50 40 30 20 0 60 70 80 90 100
60 50 40 30 20 v 0 60 70 80 90 100
60 50 40 30 20 0 60 70 80 90 100
60 50 40 30 20 0 60 70 80 90 100
0.5 0.4 0.3 0.2 0.1 f(x) α= 1, β = 2 α= 1, β = 1 α= 5, β = 1 -4 -2 0 2 4 x
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 f(x) 0 2 4 6 8 10 12 14 Probability Density Function
6 4 2 -2 -4 -4 -2 0 2 4 6
D(x) P(x) x x
α= 0.5, β = 2.0 α= 1.0, β = 2.0 α= 1.5, β = 3.0 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 f(x) f(x) α= 0.5, β = 2.0 α= 1.0, β = 2.0 α= 1.5, β = 3.0 -5 0 5 10 15 -5 0 5 10 15 Probability Density Function Cumulative Distribution Function
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 α= 3, β = 0.5 α= 3, β = 1 α= 2, β = 1 f(x) f(x) α= 3, β = 0.5 α= 3, β = 1 α= 2, β = 1 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Probability Density Function Cumulative Distribution Function
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 k= 9.0, θ = 2.0 k= 7.5, θ = 1.0 k= 0.5, θ = 1.0 k= 1.0, θ = 2.0 k= 2.0, θ = 2.0 k= 3.0, θ = 2.0 0 0.5 1 1.5 2 0 2 4 6 8 Probability Density Function Cumulative Distribution Function
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 d1= 10, d2 = 1 d1= 100, d2= 100 d1= 5, d2 = 2 d1= 1, d2 = 1 d1= 2, d2 = 1 d1= 5, d2 = 2 0 1 2 3 4 0 1 2 3 4 Probability Density Function Cumulative Distribution Function
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 λ = 1.5 λ = 1.0 λ = 0.5 λ = 0.5 λ = 1.0 λ = 1.5 0 1 2 3 4 0 1 2 3 4 Probability Density Function Cumulative Distribution Function
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 k= 4 k= 6 k= 8 k= 1 k= 2 k= 3 0 1 2 3 4 0 2 4 6 8 Probability Density Function Cumulative Distribution Function
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 α= 2, β = 5 α= 2, β = 2 α= 0.5, β = 0.5 f(x) f(x) α= 5, β = 1 α= 1, β = 3 α= 2, β = 5 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Probability Density Function Cumulative Distribution Function