3.2 Homogeneous Linear ODEs with Constant Coefficients

Slides:



Advertisements
Similar presentations
Ch 3.6: Variation of Parameters
Advertisements

Chapter 2: Second-Order Differential Equations
Section 2.1 Introduction: Second-Order Linear Equations.
Differential Equations MTH 242 Lecture # 11 Dr. Manshoor Ahmed.
Second-Order Differential
Ch 3.5: Nonhomogeneous Equations; Method of Undetermined Coefficients
Sheng-Fang Huang. Introduction If r (x) = 0 (that is, r (x) = 0 for all x considered; read “r (x) is identically zero”), then (1) reduces to (2) y"
Additional Topics in Differential Equations
SECOND-ORDER DIFFERENTIAL EQUATIONS
Nonhomogeneous Linear Differential Equations
Math 3120 Differential Equations with Boundary Value Problems
Chapter 8 With Question/Answer Animations 1. Chapter Summary Applications of Recurrence Relations Solving Linear Recurrence Relations Homogeneous Recurrence.
Sheng-Fang Huang. 4.0 Basics of Matrices and Vectors Most of our linear systems will consist of two ODEs in two unknown functions y 1 (t), y 2 (t),
Boyce/DiPrima 9th ed, Ch 4.2: Homogeneous Equations with Constant Coefficients Elementary Differential Equations and Boundary Value Problems, 9th edition,
Copyright © Cengage Learning. All rights reserved. 17 Second-Order Differential Equations.
Section 4.4 Undetermined Coefficients— Superposition Approach.
Second-Order Differential
Math 3120 Differential Equations with Boundary Value Problems
Differential Equations MTH 242 Lecture # 09 Dr. Manshoor Ahmed.
Ch 4.2: Homogeneous Equations with Constant Coefficients Consider the nth order linear homogeneous differential equation with constant, real coefficients:
Differential Equations
An IVP would look like Second Order Linear DE’s. Thm. Existence of a Unique Solution Let a 0, a 1, a 2, and g(x) be continuous on an interval containing.
Chapter 9 Differential Equations 9.1 Modeling with Differential Equations *9.2 Direction Fields and Euler’s Method 9.3 Separable Equations *9.4 Exponential.
7.3 Linear Systems of Equations. Gauss Elimination
1.1 Basic Concepts. Modeling
Systems of Linear Differential Equations
Ch 4.3: Nonhomogeneous Equations: Method of Undetermined Coefficients
Week 9 4. Method of variation of parameters
Chapter 1: Definitions, Families of Curves
Linear homogeneous ODEn with constant coefficients
Chapter 9: Some Differential Equations
Linear Equations Constant Coefficients
A PART Ordinary Differential Equations (ODEs) Part A p1.
SECOND-ORDER DIFFERENTIAL EQUATIONS
Basic Definitions and Terminology
1.5 Linear ODEs. Bernoulli Equation. Population Dynamics
Week 8 Second-order ODEs Second-order linear homogeneous ODEs
Advanced Engineering Mathematics 6th Edition, Concise Edition
Chapter 4: Linear Differential Equations
Linear Differential Equations
Ch 4.1: Higher Order Linear ODEs: General Theory
We will be looking for a solution to the system of linear differential equations with constant coefficients.
Class Notes 7: High Order Linear Differential Equation Homogeneous
2.7 Nonhomogeneous ODEs Section 2.7 p1.
FIRST ORDER DIFFERENTIAL EQUATIONS
Chapter 8: Linear Systems of Equations
of Matrices and Vectors
Chapter 5: Linear Equations with Constant Coefficients
Higher-Order Linear Homogeneous & Autonomic Differential Equations with Constant Coefficients MAT 275.
Systems of First Order Linear Equations
MAE 82 – Engineering Mathematics
Class Notes 5: Second Order Differential Equation – Non Homogeneous
Ch 4.4: Variation of Parameters
Systems of Differential Equations Nonhomogeneous Systems
Engineering Analysis I
Ch 5.2: Series Solutions Near an Ordinary Point, Part I
2.5 Euler—Cauchy Equations
Ch 4.2: Homogeneous Equations with Constant Coefficients
General Solution – Homogeneous and Non-Homogeneous Equations
Boyce/DiPrima 9th ed, Ch 3.6: Variation of Parameters Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce.
5.1 Power Series Method Section 5.1 p1.
Ch 3.7: Variation of Parameters
Ch 5.4: Euler Equations; Regular Singular Points
Ch 4.1: Higher Order Linear ODEs: General Theory
2.10 Solution by Variation of Parameters Section 2.10 p1.
Variation of Parameters
Differential Equations
Chapter 4 Higher Order Differential Equations
Week 8 Second-order ODEs Second-order linear homogeneous ODEs
Presentation transcript:

3.2 Homogeneous Linear ODEs with Constant Coefficients Section 3.2 p1

3.2 Homogeneous Linear ODEs with Constant Coefficients We proceed along the lines of Sec. 2.2, and generalize the results from n = 2 to arbitrary n. We want to solve an nth-order homogeneous linear ODE with constant coefficients, written as y(n) + an−1 y(n−1) + … + a1y’ + a0y = 0 where y(n) = dny/dxn, etc. As in Sec. 2.2, we substitute y = eλx to obtain the characteristic equation (2) λ(n) + an−1λ(n−1) + … + a1λ + a0y = 0 of (1). Section 3.2 p2

3.2 Homogeneous Linear ODEs with Constant Coefficients If λ is a root of (2), then y = eλx is a solution of (1). To find these roots, you may need a numeric method, such as Newton’s in Sec. 19.2, also available on the usual CASs. For general n there are more cases than for n = 2. We can have distinct real roots, simple complex roots, multiple roots, and multiple complex roots, respectively. Section 3.2 p3

3.2 Homogeneous Linear ODEs with Constant Coefficients Distinct Real Roots If all the n roots λ1, … , λn of (2) are real and different, then the n solutions (3) constitute a basis for all x. The corresponding general solution of (1) is (4) Indeed, the solutions in (3) are linearly independent. Section 3.2 p4

Theorem 1 Basis Solutions 3.2 Homogeneous Linear ODEs with Constant Coefficients Theorem 1 Basis Solutions of (1) (with any real or complex λj’s) form a basis of solutions of (1) on any open interval if and only if all n roots of (2) are different. Section 3.2 p5

Theorem 2 Linear Independence 3.2 Homogeneous Linear ODEs with Constant Coefficients Theorem 2 Linear Independence Any number of solutions of (1) of the form eλx are linearly independent on an open interval I if and only if the corresponding λ are all different. Section 3.2 p6

3.2 Homogeneous Linear ODEs with Constant Coefficients Simple Complex Roots If complex roots occur, they must occur in conjugate pairs since the coefficients of (1) are real. Thus, if λ = γ + iω is a simple root of (2), so is the conjugate and two corresponding linearly independent solutions are (as in Sec. 2.2, except for notation) y1 = eγxcos ωx, y2 = eγxsin ωx. Section 3.2 p7

EXAMPLE 2 Simple Complex Roots. Initial Value Problem 3.2 Homogeneous Linear ODEs with Constant Coefficients EXAMPLE 2 Simple Complex Roots. Initial Value Problem Solve the initial value problem y”’ − y” + 100y’ − 100y = 0, y(0) = 4, y’(0) = 11, y”(0) = −299. Solution. (See next slide.) Section 3.2 p8

3.2 Homogeneous Linear ODEs with Constant Coefficients EXAMPLE 2 (continued) Solution. The characteristic equation is λ3 − λ2 + 100λ − 100 = 0. It has the root 1, as can perhaps be seen by inspection. Then division by λ − 1 shows that the other roots are ±10i. Hence a general solution and its derivatives (obtained by differentiation) are y = c1ex + A cos 10x + B sin 10x, y’ = c1ex − 10A sin 10x + 10B cos 10x, y” = c1ex − 100A cos 10x − 100B sin 10x. Section 3.2 p9

From this and the initial conditions we obtain, by setting x = 0, 3.2 Homogeneous Linear ODEs with Constant Coefficients EXAMPLE 2 (continued) Solution. (continued 1) From this and the initial conditions we obtain, by setting x = 0, (a) c1 + A = 4, (b) c1 + 10B = 11, (c) c1 − 100A = −299. We solve this system for the unknowns A, B, c1. Equation (a) minus Equation (c) gives 101A = 303, A = 3. Then c1 = 1 from (a) and B = 1 from (b). The solution is (Fig. 73) y = ex + 3 cos 10x + sin 10x. Section 3.2 p10

3.2 Homogeneous Linear ODEs with Constant Coefficients EXAMPLE 2 (continued) Solution. (continued 2) This gives the solution curve, which oscillates about ex (dashed in Fig. 73). Section 3.2 p11

3.2 Homogeneous Linear ODEs with Constant Coefficients Multiple Real Roots If a real double root occurs, say, λ1 = λ2, then y1 = y2 in (3), and we take y1 and xy1 as corresponding linearly independent solutions. This is as in Sec. 2.2. More generally, if λ is a real root of order m, then m corresponding linearly independent solutions are (7) eλx, xeλx, x2eλx, … , xm−1eλx. We derive these solutions after the next example and indicate how to prove their linear independence. Section 3.2 p12

Multiple Complex Roots 3.2 Homogeneous Linear ODEs with Constant Coefficients Multiple Complex Roots In this case, real solutions are obtained as for complex simple roots above. Consequently, if λ = γ + iω is a complex double root, so is the conjugate Corresponding linearly independent solutions are (11) eγxcos ωx, eγxsin ωx, xeγxcos ωx, xeγxsin ωx The first two of these result from eλx and as before, and the second two from xeλx and in the same fashion. Obviously, the corresponding general solution is (12) y = eγx [(A1 + A2x) cos ωx + (B1 + B2x) sin ωx]. For complex triple roots (which hardly ever occur in applications), one would obtain two more solutions x2eγx cos ωx, x2eγx sin ωx, and so on. Section 3.2 p13

3.3 Nonhomogeneous Linear ODEs Section 3.3 p14

(1) y(n) + pn−1(x)y(n−1) + … + p1(x)y’ + p0(x)y = r(x) 3.3 Nonhomogeneous Linear ODEs We now turn from homogeneous to nonhomogeneous linear ODEs of nth order. We write them in standard form (1) y(n) + pn−1(x)y(n−1) + … + p1(x)y’ + p0(x)y = r(x) with y(n) = dny/dxn as the first term, and r(x) ≠ 0. As for second-order ODEs, a general solution of (1) on an open interval I of the x-axis is of the form (2) y(x) = yh(x) + yp(x). Here yh(x) = c1y1(x) + … + cnyn(x) is a general solution of the corresponding homogeneous ODE (3) y(n) + pn−1(x)y(n−1) + … + p1(x)y’ + p0(x)y = 0 on I. Also, yp is any solution of (1) on I containing no arbitrary constants. If (1) has continuous coefficients and a continuous r(x) on I, then a general solution of (1) exists and includes all solutions. Thus (1) has no singular solutions. Section 3.3 p15

(4) y(x0) = K0, y’(x0) = K1, … , y(n−1)(x0) = Kn−1 3.3 Nonhomogeneous Linear ODEs An initial value problem for (1) consists of (1) and n initial conditions (4) y(x0) = K0, y’(x0) = K1, … , y(n−1)(x0) = Kn−1 with x0 on I. Under those continuity assumptions, it has a unique solution. The ideas of proof are the same as those for n = 2 in Sec. 2.7. Section 3.3 p16

Method of Undetermined Coefficients 3.3 Nonhomogeneous Linear ODEs Method of Undetermined Coefficients Equation (2) shows that for solving (1) we have to determine a particular solution of (1). For a constant-coefficient equation (5) y(n) + an−1y(n−1) + … + a1y’ + a0y = r(x) (a0, … , an−1 constant) and special r(x) as in Sec. 2.7, such a yp(x) can be determined by the method of undetermined coefficients, as in Sec. 2.7, using the following rules. (A) Basic Rule as in Sec. 2.7. (B) Modification Rule. If a term in your choice for yp(x) is a solution of the homogeneous equation (3), then multiply this term by xk, where k is the smallest positive integer such that this term times xk is not a solution of (3). (C) Sum Rule as in Sec. 2.7. Section 3.3 p17

Method of Variation of Parameters 3.3 Nonhomogeneous Linear ODEs Method of Variation of Parameters The method of variation of parameters (see Sec. 2.10) also extends to arbitrary order n. It gives a particular solution yp for the nonhomogeneous equation (1) (in standard form with y(n) as the first term!) by the formula (7) on an open interval I on which the coefficients of (1) and r(x) are continuous. Section 3.3 p18

Method of Variation of Parameters 3.3 Nonhomogeneous Linear ODEs Method of Variation of Parameters In (7) the functions y1, … , yn form a basis of the homogeneous ODE (3), with Wronskian W, and Wj (j = 1, … , n) is obtained from W by replacing the jth column of W by the column [0 0 … 0 1]T. Thus, when n = 2, this becomes identical with (2) in Sec. 2.10, Section 3.3 p19