Date of download: 10/10/2017 Copyright © ASME. All rights reserved.

Slides:



Advertisements
Similar presentations
Date of download: 5/28/2016 Copyright © ASME. All rights reserved. From: Modal Parameter Extraction of a Turboset From High Speed Balance Data J. Eng.
Advertisements

Date of download: 5/29/2016 Copyright © ASME. All rights reserved. From: A Study on the Optimization of an Air Dehumidification Desiccant System J. Thermal.
Date of download: 6/3/2016 Copyright © ASME. All rights reserved. From: Effect of Second Order Velocity-Slip/Temperature-Jump on Basic Gaseous Fluctuating.
Date of download: 6/3/2016 Copyright © ASME. All rights reserved. From: Improving Falling Ball Tests for Viscosity Determination J. Fluids Eng. 2005;128(1):
Date of download: 6/22/2016 Copyright © ASME. All rights reserved. From: Dynamics of Flow in a Mechanical Heart Valve: The Role of Leaflet Inertia and.
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: A Batchelor Vortex Model for Mean Velocity of Turbulent Swirling Flow in a Macroscale.
Date of download: 6/27/2016 Copyright © ASME. All rights reserved. From: Numerical Modeling of Regenerative Cooling System for Large Expansion Ratio Rocket.
Date of download: 6/28/2016 Copyright © ASME. All rights reserved. From: Stability of Carotid Artery Under Steady-State and Pulsatile Blood Flow: A Fluid–Structure.
Date of download: 7/2/2016 Copyright © ASME. All rights reserved. From: Calibrated Coarse Grid-Finite Volume Method for the Fast Calculation of the Underhood.
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. Cost-Effective Reliability Analysis and Testing of Medical Devices 1 J. Med. Devices.
Date of download: 7/11/2016 Copyright © ASME. All rights reserved. From: Experimental Study of Drop Deformation and Breakup in a Model Multitoothed Rotor-Stator.
Date of download: 7/16/2016 Copyright © ASME. All rights reserved. From: Investigation of Cooling Process of a High-Temperature Hollow Cylinder in Moving.
Date of download: 9/17/2016 Copyright © ASME. All rights reserved. From: Effects of Swirl Velocities From Fan Assemblies Mounted on Lifting Surfaces J.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: A New 3D Mechanism for Modeling the Passive Motion of the Tibia–Fibula–Ankle Complex.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Infrared Based Wall Shear Stress Measurement Techniques J. Thermal Sci. Eng. Appl.
Date of download: 9/19/2016 Copyright © ASME. All rights reserved. From: A Reduced-Order Model of the Mean Properties of a Turbulent Wall Boundary Layer.
Date of download: 9/20/2016 Copyright © ASME. All rights reserved. From: Simulation and Optimization of Drying of Wood Chips With Superheated Steam in.
Date of download: 10/1/2017 Copyright © ASME. All rights reserved.
Date of download: 10/2/2017 Copyright © ASME. All rights reserved.
Date of download: 10/7/2017 Copyright © ASME. All rights reserved.
Date of download: 10/8/2017 Copyright © ASME. All rights reserved.
From: Pressure Surge During Cryogenic Feedline Chilldown Process
Date of download: 10/11/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
Date of download: 10/12/2017 Copyright © ASME. All rights reserved.
From: Forced Flexural Gravity Wave Motion in Two-Layer Fluid
Date of download: 10/15/2017 Copyright © ASME. All rights reserved.
Date of download: 10/15/2017 Copyright © ASME. All rights reserved.
Date of download: 10/15/2017 Copyright © ASME. All rights reserved.
From: Laminar Film Condensation on a Nanosphere
Date of download: 10/18/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
From: Hole-Drilling Residual Stress Profiling With Automated Smoothing
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/4/2017 Copyright © ASME. All rights reserved.
Date of download: 11/5/2017 Copyright © ASME. All rights reserved.
Date of download: 11/5/2017 Copyright © ASME. All rights reserved.
Date of download: 11/10/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/14/2017 Copyright © ASME. All rights reserved.
Date of download: 11/15/2017 Copyright © ASME. All rights reserved.
Date of download: 11/16/2017 Copyright © ASME. All rights reserved.
Date of download: 12/16/2017 Copyright © ASME. All rights reserved.
Date of download: 12/17/2017 Copyright © ASME. All rights reserved.
Date of download: 12/20/2017 Copyright © ASME. All rights reserved.
From: A Damage-Mechanics-Based Constitutive Model for Solder Joints
Date of download: 12/23/2017 Copyright © ASME. All rights reserved.
Date of download: 12/25/2017 Copyright © ASME. All rights reserved.
From: Modeling a Phase Change Thermal Storage Device
Date of download: 12/27/2017 Copyright © ASME. All rights reserved.
From: Seabed Shear Stress Spectrum for Very Rough Beds
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/3/2018 Copyright © ASME. All rights reserved.
Date of download: 1/3/2018 Copyright © ASME. All rights reserved.
From: Dynamics of a Basketball Rolling Around the Rim
Design of a Wireless Biological Signal Conditioning System1
Date of download: 3/4/2018 Copyright © ASME. All rights reserved.
Date of download: 3/10/2018 Copyright © ASME. All rights reserved.
Presentation transcript:

Date of download: 10/10/2017 Copyright © ASME. All rights reserved. From: Formulas for Calibration of Rheological Parameters of Bingham Fluid in Couette Rheometer J. Fluids Eng. 2015;137(4):041202-041202-11. doi:10.1115/1.4028813 Figure Legend: Definition sketch of two cylinders and the coordinate system. The clockwise direction of θ is defined as positive. The radii of the inner and outer cylinders are R1 and R2, respectively; δ is the shear layer thickness, ur and uθ are radial and angular velocities, respectively. The inner cylinder rotates counterclockwise at a constant speed Ω, and the outer cylinder is stationary.

Date of download: 10/10/2017 Copyright © ASME. All rights reserved. From: Formulas for Calibration of Rheological Parameters of Bingham Fluid in Couette Rheometer J. Fluids Eng. 2015;137(4):041202-041202-11. doi:10.1115/1.4028813 Figure Legend: Schematic sketch of flow conditions and normalized BCs: (a) flow with plug layer and (b) flow without plug layer. B is Bingham number; α is radius ratio; β is normalized shear layer thickness and Δ=1+β is the normalized location of the interface between the plug and shear layers.

Date of download: 10/10/2017 Copyright © ASME. All rights reserved. From: Formulas for Calibration of Rheological Parameters of Bingham Fluid in Couette Rheometer J. Fluids Eng. 2015;137(4):041202-041202-11. doi:10.1115/1.4028813 Figure Legend: The normalized shear layer thickness β: (a) as a function of Bingham number B and (b) as a function of rotational speed Ω for different Bingham material (different values of τ0/μ).

Date of download: 10/10/2017 Copyright © ASME. All rights reserved. From: Formulas for Calibration of Rheological Parameters of Bingham Fluid in Couette Rheometer J. Fluids Eng. 2015;137(4):041202-041202-11. doi:10.1115/1.4028813 Figure Legend: The critical Bingham number Bcr = τ0/μΩcr, where Ωcr is the critical rotational speed, as a function of radius ratio α. The upper and lower zones represent the flow conditions with and without plug layer, respectively.

Date of download: 10/10/2017 Copyright © ASME. All rights reserved. From: Formulas for Calibration of Rheological Parameters of Bingham Fluid in Couette Rheometer J. Fluids Eng. 2015;137(4):041202-041202-11. doi:10.1115/1.4028813 Figure Legend: The absolute value of the ratio of inner cylinder wall shear stress Γ to yield stress τ0 as a function of radius ratio α and different values of Bingham number B

Date of download: 10/10/2017 Copyright © ASME. All rights reserved. From: Formulas for Calibration of Rheological Parameters of Bingham Fluid in Couette Rheometer J. Fluids Eng. 2015;137(4):041202-041202-11. doi:10.1115/1.4028813 Figure Legend: The absolute value of the ratio of inner cylinder wall shear stress Γ to yield stress τ0: (a) as a function of rotational speed Ω for a given Bingham material (fixed τ0/μ) in the gaps with different values of radius ratio α = R2/R1 and (b) as a function of Ω for different material (different τ0/μ) in the gap with fixed α = 1.5

Date of download: 10/10/2017 Copyright © ASME. All rights reserved. From: Formulas for Calibration of Rheological Parameters of Bingham Fluid in Couette Rheometer J. Fluids Eng. 2015;137(4):041202-041202-11. doi:10.1115/1.4028813 Figure Legend: Diagram of ln(η)/η as a function of η, which η = Γi/τ0 represents the ratio of measured value of shear stress Γi to yield stress τ0, and η must be greater than unity