a liquid xenon Compton camera

Slides:



Advertisements
Similar presentations
Advanced GAmma Tracking Array
Advertisements

1 Aaron Manalaysay Physik-Institut der Universität Zürich CHIPP 2008 Workshop on Detector R&D June 12, 2008 R&D of Liquid Xenon TPCs for Dark Matter Searches.
PET Design: Simulation Studies using GEANT4 and GATE - Status Report - Martin Göttlich DESY.
I.Kreslo CHIPP workshop on Detector R&D, University of Geneva, June Development of Liquid Nitrogen Time Projection Chambers A. Ereditato,
Detection of Gamma-Rays and Energetic Particles
Ionization. Measuring Ions A beam of charged particles will ionize gas. –Particle energy E –Chamber area A An applied field will cause ions and electrons.
The XENON Project A 1 tonne Liquid Xenon experiment for a sensitive Dark Matter Search Elena Aprile Columbia University.
Status of EXO-200 Carter Hall, University of Maryland DUSEL town meeting November 4, 2007.
Techniques for detecting X-rays and gamma-rays Pair production Creation of elementary particle and its antiparticle from a photon. Occurs only if enough.
Proportional Light in a Dual Phase Xenon Chamber
Planar scintigraphy produces two-dimensional images of three dimensional objects. It is handicapped by the superposition of active and nonactive layers.
D_R&D_6 Liquid xenon detector technology Workshop FJPPL’07, 9-12 May 2007, KEK, Japan 3  Medical Imaging with liquid xenon and 44 Sc Eric Morteau, Patrick.
ZEPLIN II Status & ZEPLIN IV Muzaffer Atac David Cline Youngho Seo Franco Sergiampietri Hanguo Wang ULCA ZonEd Proportional scintillation in LIquid Noble.
0 A Fast Time Incorporating Monte-Carlo Simulation of Wire Chamber Based Small Animal PET Scanners for Detector Scatter Correction M. Dawood 1, Don Vernekohl.
Gwenaëlle LEFEUVRE APC-Collège de France, Paris, France paris7.fr.
HEALTH Novel MR-compatible PET detectors for simultaneous PET/MRI imaging FP7-HEALTH-2009-single-stage The focus should be to develop novel.
J.T. White Texas A&M University SIGN (Scintillation and Ionization in Gaseous Neon) A High-Pressure, Room- Temperature, Gaseous-Neon-Based Underground.
Discussion: développement du système de lecture des photomultiplicateurs pour le prototype de détecteur Argon liquide de LBNO 21/11/2013 Réunion: APC,
1 5-9 October th ICATPP, Como, Italy S. Maltezos NITROGEN MOLECULAR SPECTRA OF AIR FLUORESCENCE EMULATOR USING A LN 2 COOLED CCD S. Maltezos, E.
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
Diego Gonzalez Diaz (Univ. Zaragoza and CERN)
Development of a Segmented Planar Germanium Imaging Detector
A Single Photon Emission Computer Tomograph for breast cancer imaging S. Vecchio a, N. Belcari a, P. Bennati b, M. Camarda a, R. Campanini c, M. N. Cinti.
Jonathan BouchetBerkeley School on Collective Dynamics 1 Performance of the Silicon Strip Detector of the STAR Experiment Jonathan Bouchet Subatech STAR.
PSD-V, London, September 1999 Two dimensional readout in a liquid xenon ionisation chamber V.Solovov, V.Chepel, A.Pereira, M.I.Lopes, R.Ferreira Marques,
1 Nuclear Medicine SPECT and PET. 2 a good book! SR Cherry, JA Sorenson, ME Phelps Physics in Nuclear Medicine Saunders, 2012.
1 MPGD2009 Advancements of labelled radio-pharmaceutics imaging with the PIM-MPGD J. Donnard a, N.Arlicot b,
Development of RPC based PET B. Pavlov University of Sofia.
MPI Semiconductor Laboratory, The XEUS Instrument Working Group, PNSensor The X-ray Evolving-Universe Spectroscopy (XEUS) mission is under study by the.
Acquisition time6 min1 min 12 s Collimator height25 mm (Anger)12 mm (HiSens) Detector1 layer, 1 pixel / hole3 layers, 1 pixel / hole3 layers, 4 pixels.
ZEPLIN III Position Sensitivity PSD7, 12 th to 17 th September 2005, Liverpool, UK Alexandre Lindote LIP - Coimbra, Portugal On behalf of the ZEPLIN/UKDM.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
Room-Temperature Semiconductors: From concepts to applications Zhong He Nuclear Engineering and Radiological Sciences Department The University of Michigan,
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
a Very Interesting Presentation
Thorsten Lux. Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating 2 Gas (Mixture)
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
5/13/11 FCPA Mini-RetreatDarkSide - S.Pordes1 DarkSide 10 kg Prototype at Princeton Distillation Column for Depleted Argon at Fermilab DarkSide 50 at Gran.
Study of the cryogenic THGEM-GPM for the readout of scintillation light from liquid argon Xie Wenqing( 谢文庆 ), Fu Yidong( 付逸冬 ), Li Yulan( 李玉兰 ) Department.
Presented by Samuel DUVAL On behalf of the Xénon group Industry-Academia Matching Event on Micro-Pattern Gaseous Detectors April 2012, Annecy-le-Vieux.
1 Aaron Manalaysay Physik-Institut der Universität Zürich 2009 UniZH/ETH Doktorandenseminar June 5, 2009 Rubidium 83: A low-energy, spatially uniform calibrator.
The New CHOD detector for the NA62 experiment at CERN S
The Electromagnetic Calorimetry of the PANDA Detector at FAIR
Elettra Sincrotrone Trieste
SoLid: Recent Results and Future Prospects
Development of a Compton Camera for online range monitoring
A. Badertscher, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P
Reconstructions with TOF for in-beam PET
MPGD 2013 Conference,Zaragoza July 1-4, 2012
Development of Liquid Nitrogen Time Projection Chamber
Summary of the Compton-PET project
Liquid Xenon Detector for the MEG Experiment
大強度
PAN-2013: Radiation detectors
3g Medical Imaging R&D with liquid xenon Compton telescope
New Study for SiPMs Performance in High Electric Field Environment
Upgrade of LXe gamma-ray detector in MEG experiment
Application of Nuclear Physics
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Ionization detectors ∆
PHOTON DETECTION AND LOCALIZATION WITH THE
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
Upgrade of LXe gamma-ray detector in MEG experiment
A.Takada, A.Takeda, T.Tanimori
Deng Ziyan Jan 10-12, 2006 BESIII Collaboration Meeting
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
PHYS 3446 – Lecture #16 Monday ,April 2, 2012 Dr. Brandt
E. Erdal(1), L. Arazi(2), A. Breskin(1), S. Shchemelinin(1), A
Presentation transcript:

a liquid xenon Compton camera 3 g medical imaging with a liquid xenon Compton camera and Scandium-44 radionuclide. J.P. Cussonneau on behalf of XEMIS project Subatech (IMT-Atlantique, In2p3/CNRS, Nantes University)

Outline XEMIS project 3γ Imaging XEMIS1: performances XEMIS2: small animal imaging Image - Simulation Conclusion

XEMIS (Xenon Medical Imaging System) (β+, γ) emitter for functional imaging, e.g. 44Sc • Liquid xenon Compton camera Time projection chamber (TPC) - Direct 3D location of the radioactive source - Administered dose reduction &/or shorter acquisition time XEMIS1 R&D XEMIS2 XEMIS3 Human body imaging Small animal imaging 3γ : 20 kBq 100+ times less of injected activity Large field-of-view High sensitivity 30 kg LXe 200 kg LXe

3 imaging with Compton telescope (E1, x1, y1, z1) (E2, x2, y2, z2) LOR θ Δ γ 511keV Compton Telescope  E0 Cone Emitter (β+,γ) Reconstructed  direction Spatial resolution cone axis (∆) Energy resolution opening angle () - Direct 3D location of the radioactive source: res. along LOR ~ 1 cm (FWHM) - Reduction of injected activity: 100 times less Both new radiopharmaceutical and new camera technology !

3g imaging using 44Sc based pharmaceuticals 44Sc is the best candidate β+ 94.3 % γ e+ Emission β+ Emax = 1.474 MeV T1/2 = 4 h Range in H2O ~ 2.8mm B.R. ~ 100% 1.157 MeV  Good for Compton imaging Fast emission Precise time coincidence Production: ARRONAX cyclotron Radiopharmaceutical : CRCINA/INSERM Ready for tests with [44Sc]-DOTA

XEMIS1: Compton camera XEMIS1 is a single phase liquid xenon TPC Field rings XEMIS1 is a single phase liquid xenon TPC PMT 30 kg ultra pure LXe @ -110°C Active volume 2.5 x 2.5 x 12 (or 6) cm3 1” square UV sensitive PMT Segmented anode (2.5 x 2.5 cm2 active) in 64 pixels Frisch grid. Gap 0.5 (or 1) mm Field shaping rings for homogeneous drift field up to 2.5 kV/cm 12 cm Frisch grid Anode

Why liquid xenon? Neon Argon Krypton Xenon LXe provides: Atomic number 10 18 36 54 Density (g/cm3) 1.2 1.4 2.4 3 Boiling Point (K) 27.1 87.3 119.8 165.0 Light yield (UV/MeV) ( ) 30000 40000 25000 42000 Ionization yield (/MeV) ( ) 46000 49000 64000 Decay Time (ns) 10, 15400 6.3, 1500 7.0, 85 2.2 , 27 , 45 Wavelength (nm) 85 128 150 178 J.A. Nikkel et al. 2012 JINST LXe provides: Simpler cryogenics Simultaneous production of a scintillation and an ionization signal Fast decay, high scintillation light yield and high ionization yield

XEMIS1: Time Projection Chamber Particle interaction in the active volume produces prompt scintillation light and ionization electrons Scintillation light (PMT) t0 LXe γ Field rings Cathode Anode PMT LXe PMT Fast scintillation Decay times: 2.2, 27, 45 ns + Cathode Ionization (Frisch grid, Anode, FEE) Energy + (x, y) + t1 LXe λ = 178 nm λ = 178 nm Field rings UV z Vdrift is known ~ 2 mm/ms Z = vdrift.(t1 - t0) Frisch Grid Anode γ Energy + 3D Positions of each interaction z x y

XEMIS1: FEE - Ionization read-out Noise (RMS): 85 +/- 5 e- (@ -100 C ) IDEF-X Asics Developed for CdTe @ IrFU (Gevin et al. 2006) Adapted by Subatech for LXe 511 keV (@1 kV/cm)  27200 e- LXe Anode 64 pixels 3.1 x 3.1 mm2

Ionization : signal @ 511 keV for Photoelectrics 1 ch. = 80 ns c

Ionization : signal @ 511 keV for Compton 1 ch. = 80 ns c

XEMIS1: Ionization results @ 511 keV Energy res.(s)= 4.92 ± 0.04 % @ 1 kV/cm Primary electron E  102 keV thermalization Secondary electrons Tertiary electrons E2 E1 E0 Thomas et al. 1989 Phys. Rev. A Recombination in LXe: E0  5 eV E1  5 keV E2  20 keV Thomas Imel Model is not so good! MC simulations required… NEST/Geant4 M Szydagis et al. 2011 Jinst. , Oct 2011

XEMIS1: Drift time – spatial resolution Photoelectric events @ 511 keV and 1 kV/cm Beginning γ End Drift time resolution: ∼ 50 ns Z resolution: ∼ 100 μm Drift velocity ~ 2 mm/ms

XEMIS1: Angular resolution Acceptance & resolution limited by active area of XEMIS1 Improvement expected at higher electric field XEMIS2 is the key Equivalent to ΔL = 8.2 mm (FWHM) for a 5 cm distant source α 0.75 kV/cm Source: 22Na (E0 = 1.274 MeV) BaF2 BaF2 LXe TPC Gallego et al. NIMA 2015

XEMIS2: Small animals imaging Purification ReStoX XEMIS2 Camera Purification ReStoX XEMIS2 XEMIS2 at Nantes Hospital: 1st image: 1st semester 2018 preclinical researches: until 2020

Install a liquid xenon camera in a hospital ? XEMIS2: ReStoX ReStoX: Recovery and Storage system of Xenon Scientific collaboration: Install a liquid xenon camera in a hospital ? XEMIS2 ReStoX Xenon cryogenics of XEMIS2 : - compact (210 kg capacity) safe (from -110°C to RT) High cooling power LN2(10 kW) ultra clean (~ppb impurities)

XEMIS2 : ReStoX commissioning ~9.5 days In case of LN2 failure, RT should be reached in ~ 1 year

Commissioning: camera filling (XEMIS2 is pre-cooled @ LXe temp.) 125 kg filled in ~ 1 hour at 30 nl/mn thanks to the pump. GXe flows through getters

Commissioning : assisted gravity recovering Bypass of the circulation circuit, direct connection of gaseous phases LN2 valve closed on ReStoX End of LXe Recovering 125 kg LXe recovered in less than 9 mn ! (w/o cooling power)

From XEMIS1 to XEMIS2 XEMIS2: Full liquid xenon cylindrical camera dedicated to small animal imaging Scintillation What we have learnt from XEMIS1: 380 x 1’’ PMTs in LXe LXe: 200 kg cathode - Drift time resolution: < 50 ns - 3D spatial resolution: < 1 mm - Energy resolution (s): ~ 4% @ 511 keV - Very low elec. noise: 85 e- (~ 1.5 keV) - Ionization, attenuation length: > 1 m Field Rings LXe Air 120mm 120mm - Frisch grid / gap properties affect: - Charge collection - Signal shape - Charge and time measurement Vacuum LXe TPC Ionization Active volume ‐ axial : 2 x 12 cm ‐ radius : 7 -> 19 cm - Optimal time and charge measurement → CFD method: XTRACT front-end 2.104 pixels: 3.1 x 3.1 mm

XEMIS2 : DAQ for Ionization IDeF-X HD_LXe Imaging Detector Front-end XTRACT: Xemis TPC Readout for Acquisition of Charge and Time ∼20000 electronic channels Challenge: continuous read-out with negligible dead-time XTRACT v2 for summer 2017

XEMIS2 : ionization DAQ scheme Vacuum LXe Cooled directly by LXe Air PU X 8 IDEF-X XTRAC X 32 XTRACT pixels 6 x FPGA Board 20480 80 LVDS > 2m 8 x 32A 2A+1D 640x Idef-X (32W) 50mW/chip 640x XTRACT (32W) 50mW/Chip 80 x PU (40W) 500mW/PU TIdef-X = -100°C TXtract = -80°C TPU = -30°C Challenge : Continuous read-out with negligible dead-time Goal : record on disc ~104 charge and time signals/pixel/s

XEMIS2: full Gate/Geant4 simulation 3g detection efficiency MOUSE PHANTOM   Cylinder: radius = 2.6 cm length = 12 cm Sphere: radius = 5 mm SOURCE 44Sc Total: 20.0 kBq Hot Sphere: 0.5 kBq Contrast  = 15 XEMIS2 CAMERA TPC active area Radius: 7 -> 19cm Axial length: 24 cm Liquid Xenon Acquisition time : tA = 20 min PMTs Mouse Phantom Cathode Anodes 3g detection efficiency At least 4 Hits in LXe : 1 for each 511 keV photons 2 for 1157 keV photon Phantom length Phantom radius Quite homogeneous !

XEMIS2 image reconstruction 20 kBq, 20 mn Image reconstruction -> Iterative ML-EM assuming Poisson Distribution Reconstructed images @ 23 iterations. Central transverse slices (x,y) Simulated true distribution It’s completely new and it works ! Expected resolution : [2-3 mm] all over the field of view A lot of works for the future …

Conclusion 3g imaging can be a new medical modality thanks to LXe technology. Big challenges and innovations for the design of the camera. XEMIS2 is under construction and will demonstrates the potential of LXe for medical imaging. Expected image qualities are very promising: - very low injected activity, - good spatial resolution all over the FOV, - reduced acquisition time on a large FOV. LXe technology is scalable: design of large whole body camera could be investigated.