Chapter 9 Chemical Quantities.

Slides:



Advertisements
Similar presentations
Stoichiometry: The study of quantitative measurements in chemical formulas and reactions Chemistry – Mrs. Cameron.
Advertisements

Stoichiometry A fancy name for using a balanced equation.
Chapter 9: Stoichiometry
Chemical Quantities In Reactions
Chemical Quantities Chapter 9
Chapter #8 Chemical Quantities.
Limiting Reactants & Percent Yield. Limiting Reactants  The reactant that limits the amount of product formed in a chemical reaction. The quantity of.
Mathematics of Chemical Equations By using “mole to mole” conversions and balanced equations, we can calculate the exact amounts of substances that will.
Ch. 9 Notes – Chemical Quantities
Chapter 9 Chemical Quantities. 9 | 2 Information Given by the Chemical Equation Balanced equations show the relationship between the relative numbers.
Ch. 9 Notes -- Stoichiometry
Limiting Reagent and Theoretical Yield 1
Stoichiometry The Math of Chemical Reactions Unit 9.
Ch. 8: Quantities in Chemical Reactions
Stoichiometry Calculating Masses of Reactants and Products.
Chapter 8 Quantities In Reactions. Homework Assigned Problems (odd numbers only) “Problems” 17 to 73 “Cumulative Problems” “Highlight Problems”
Mark S. Cracolice Edward I. Peters Mark S. Cracolice The University of Montana Chapter 10 Quantity Relationships in.
Unit 8 - Stoichiometry. 2CuCl + H 2 S → Cu 2 S +2HCl The coefficients in the equation can either mean particles or moles.
Thermochemistry.
Chapter #9 Stoichiometry. Chapter 9.1 Composition stoichiometry deals with the mass relationships of elements in compounds. Reaction stoichiometry involves.
Stoichiometry. Information Given by the Chemical Equation  The coefficients in the balanced chemical equation show the molecules and mole ratio of the.
Chapter 9 – STOICHIOMETRY The MATH of a CHEMICAL REACTION.
Chapter 9 Chemical Quantities. Copyright © Houghton Mifflin Company. All rights reserved. 9 | 2 Information Given by the Chemical Equation Balanced equations.
Chapter 17: Measuring and Expressing Enthalpy Changes
Ch. 9 Notes – Chemical Quantities
Chapter 12 Stoichiometry. 1. The part of chemistry that deals with the amount of substances involved in chemical reactions A. 3 basic steps to every stoichiometry.
Limiting Reactions and Percent Yield Calculating by moles or mass ©2011 University of Illinois Board of Trustees
Stoichiometry Warmup I have 1 mole of CO 2 gas at STP. How many grams of CO 2 do I have? How many Liters of CO 2 do I have? How many molecules of CO 2.
Chemistry 068, Chapter 8. Moles and Chemical Equations Chemical equations can be viewed in terms of molecules or in terms of moles. The coefficients in.
Ch. 9 Notes – Chemical Quantities Stoichiometry refers to the calculations of chemical quantities from __________________ chemical equations. Interpreting.
Video 9-1 Reaction Stoichiometry Steps for Problem Solving.
Chapter #9 Chemical Quantities. STOICHIOMETRY Stoichiometry is the use of balanced chemical equations in the conversion process. Examples Calculate the.
Ch. 9 Notes -- Stoichiometry Stoichiometry refers to the calculations of chemical quantities from __________________ chemical equations. Interpreting Everyday.
REPRESENTING ENTHALPY CHANGES. 1. ΔH Notation 2. Thermochemical Equation 3. Potential Energy Diagram.
Chemistry in Life  You have a future job working for Consumer Reports  Testing advertising claims  An antacid company claims  Neutralizes ten times.
Chapter 9 Stoichiometry Test REVIEW SHEET
Chemistry Chapter 9 - Stoichiometry South Lake High School Ms. Sanders.
Section 9.1 Using Chemical Equations Steven S. Zumdahl Susan A. Zumdahl Donald J. DeCoste Gretchen M. Adams University of Illinois at Urbana-Champaign.
SOL Review 6 Stoichiometry. Consider: 4NH 3 + 5O 2  6H 2 O + 4NO Many conversion factors exist: 4 NH 3 6 H 2 04NO 5O 2 (and others) 5 O 2 4 NO4 NH 3.
Thermochemical equations express the amount of heat released or absorbed by chemical reactions. Section 3: Thermochemical Equations K What I Know W What.
Chapter 9 Chemical Quantities.
CHEMISTRY The Central Science 9th Edition
Stoichiometry Chapter 12.
Stoichiometry.
Calculations from Chemical Equations
Stoichiometry and the Mole
Chapter 9: Stoichiometry
Ch. 9 Notes -- Stoichiometry
Chemical Calculations and Equations
HW Enthalpy and Stoichiometry Problem Set
Chapter 9 STOICHIOMETRY
Enthalpy and Thermochemical Equations
MASS - MASS STOICHIOMETRY
Calculating Quantities in Reactions Mass-to-mass problems
HW 12-8 Enthalpy and Stoichiometry Problem Set
Chapter 12 Review.
Limiting and Excess Reactants
Ch. 11 The Mathematics of Chemical Equations
Chapter 12 CHEMICAL STOICHIOMETRY
Stoichiometry Vocab Theoretical Yield: the calculated amount of product yielded by a reaction (found through stoichiometry) Actual Yield: the actual amount.
Mathematics of Chemical Equations
Ch. 9 Notes -- Stoichiometry
Quantities In Chemical Reactions
Stoichiometry Chapter 12.
Stoichiometry & Limiting Reactants
DO NOW: On back of Notes! How much heat (in kJ) is given out when 85.0g of lead cools from 200.0C to 10.0C? (c=.129 J/gC)
Stoichiometry.
Stoichiometry.
CHEMISTRY The Central Science 9th Edition
Presentation transcript:

Chapter 9 Chemical Quantities

STOICHIOMETRY Stoichiometry is the use of balanced chemical equations in the conversion process. Examples Calculate the mass of water formed from 6.33 g of hydrogen. A balanced equation is required. 2 H2 + O2 2H2O 6.33 g H2

STOICHIOMETRY Stoichiometry is the use of balanced chemical equations in the conversion process. Examples Calculate the mass of water formed from 6.33 g of hydrogen. A balanced equation is required. 2 H2 + O2 2H2O 6.33 g H2 Mole H2 2.016 g H2

STOICHIOMETRY Stoichiometry is the use of balanced chemical equations in the conversion process. Examples Calculate the mass of water formed from 6.33 g of hydrogen. A balanced equation is required. 2 H2 + O2 2H2O 6.33 g H2 Mole H2 2.016 g H2

STOICHIOMETRY Stoichiometry is the use of balanced chemical equations in the conversion process. Examples Calculate the mass of water formed from 6.33 g of hydrogen. A balanced equation is required. 2 H2 + O2 2H2O 6.33 g H2 Mole H2 Mole H2O 2.016 g H2O 2 Mole H2

STOICHIOMETRY Stoichiometry is the use of balanced chemical equations in the conversion process. Examples Calculate the mass of water formed from 6.33 g of hydrogen. A balanced equation is required. 2 H2 + O2 2 H2O 6.33 g H2 Mole H2 Mole H2O 18.02 g H2O = 28.3 g H2O 2.016 g H2 2 Mole H2 Mole H2O

Excess and Limiting Reactants Reactants are substances that can be changed into something else. For example, nails and boards are reactants for carpenters, while thread and fabric are reactants for the seamstress. And for a chemist hydrogen and oxygen are reactants for making water.

Building Houses Ok, we want to build some houses, so we order 2 truck loads of boards and 2 truck loads of nails. If two truck loads of boards make one house and two truck loads of nails make 10 houses, then how many houses can we make?

Building Houses Ok, we want to build some houses, so we order 2 truck loads of boards and 2 truck loads of nails. If two truck loads of boards make one house and two truck loads of nails make 10 houses, then how many houses can we make? Yes, only one house!

Building Houses Ok, we want to build some houses, so we order 2 truck loads of boards and 2 truck loads of nails. If two truck loads of boards make one house and two truck loads of nails make 10 houses, then how many houses can we make? What reactant is in excess? And how many more houses could we use if we had enough boards?

Building Houses Ok, we want to build some houses, so we order 2 truck loads of boards and 2 truck loads of nails. If two truck loads of boards make one house and two truck loads of nails make 10 houses, then how many houses can we make? What reactant is in excess? And how many more houses could we use if we have enough boards?

Building Houses Ok, we want to build some houses, so we order 2 truck loads of boards and 2 truck loads of nails. If two truck loads of boards make one house and two truck loads of nails make 10 houses, then how many houses can we make? What reactant is in excess? And how many more houses could we use if we have enough boards? Yes, nails are in excess!

Building Houses Ok, we want to build some houses, so we order 2 truck loads of boards and 2 truck loads of nails. If two truck loads of boards make one house and two truck loads of nails make 10 houses, then how many houses can we make? What reactant is in excess? And how many more houses could we use if we have enough boards? Yes, nails are in excess! Nine more houses if we have an adequate amount of boards.

Making Water If we react 10.0g of hydrogen with 10.0g of oxygen, which, if any, reactant will be in excess?

Making Water If we react 10.0g of hydrogen with 10.0g of oxygen, which, if any, reactant will be in excess? Our conversion process can easily determine the excess reactant. We can convert 10.0 g of oxygen to grams of hydrogen to determine if there is enough hydrogen to consume the oxygen.

Making Water If we react 10.0g of hydrogen with 10.0g of oxygen, which, if any, reactant will be in excess? Our conversion process can easily determine the excess reactant. We can convert 10.0 g of oxygen to grams of hydrogen to determine if there is enough hydrogen to consume the oxygen. 2 H2 + O2 2 H2O 10.0 g O2

Making Water If we react 10.0g of hydrogen with 10.0g of oxygen, which, if any, reactant will be in excess? Our conversion process can easily determine the excess reactant. We can convert 10.0 g of oxygen to grams of hydrogen to determine if there is enough hydrogen to consume the oxygen. 2 H2 + O2 2 H2O 10.0 g O2 mole O2 32.0 g O2

Making Water If we react 10.0g of hydrogen with 10.0g of oxygen, which, if any, reactant will be in excess? Our conversion process can easily determine the excess reactant. We can convert 10.0 g of oxygen to grams of hydrogen to determine if there is enough hydrogen to consume the oxygen. 2 H2 + O2 2 H2O 10.0 g O2 mole O2 2 mole H2 32.0 g O2 mole O2

Making Water If we react 10.0g of hydrogen with 10.0g of oxygen, which, if any, reactant will be in excess? Our conversion process can easily determine the excess reactant. We can convert 10.0 g of oxygen to grams of hydrogen to determine if there is enough hydrogen to consume the oxygen. 2 H2 + O2 2 H2O 10.0 g O2 mole O2 2 mole H2 2.02 g H2 32.0 g O2 mole O2 mole H2

Making Water If we react 10.0g of hydrogen with 10.0g of oxygen, which, if any, reactant will be in excess? Our conversion process can easily determine the excess reactant. We can convert 10.0 g of oxygen to grams of hydrogen to determine if there is enough hydrogen to consume the oxygen. 2 H2 + O2 2 H2O 10.0 g O2 mole O2 2 mole H2 2.02 g H2 = 1.26 g H2 32.0 g O2 mole O2 mole H2

Making Water Only 1.26 g of hydrogen are required to react with 10.0 g of oxygen. Since there are 10.0 g of hydrogen available, then hydrogen must be the excess reactant and oxygen is the limiting reactant. The remainder of hydrogen 10.0 -1.26 = 8.7 g is called the amount in excess. The amount of water produced is determined by using the limiting reactant and converting it into water.

Making Water Only 1.26 g of hydrogen are required to react with 10.0 g of oxygen. Since there are 10.0 g of hydrogen available, then hydrogen must be the excess reactant and oxygen is the limiting reactant. The remainder of hydrogen 10.0 -1.26 = 8.7 g is called the amount in excess. The amount of water produced is determined by using the limiting reactant and converting it into water. 10.0 g O2 mole O2 32.0 g O2

Making Water Only 1.26 g of hydrogen are required to react with 10.0 g of oxygen. Since there are 10.0 g of hydrogen available, then hydrogen must be the excess reactant and oxygen is the limiting reactant. The remainder of hydrogen 10.0 -1.26 = 8.7 g is called the amount in excess. The amount of water produced is determined by using the limiting reactant and converting it into water. 10.0 g O2 mole O2 2 mole H2O 32.0 g O2 mole O2

Making Water Only 1.26 g of hydrogen are required to react with 10.0 g of oxygen. Since there are 10.0 g of hydrogen available, then hydrogen must be the excess reactant and oxygen is the limiting reactant. The remainder of hydrogen 10.0 -1.26 = 8.7 g is called the amount in excess. The amount of water produced is determined by using the limiting reactant and converting it into water. 10.0 g O2 mole O2 2 mole H2O 18.0 g H2O 32.0 g O2 mole O2 mole H2O

Making Water Only 1.26 g of hydrogen are required to react with 10.0 g of oxygen. Since there are 10.0 g of hydrogen available, then hydrogen must be the excess reactant and oxygen is the limiting reactant. The remainder of hydrogen 10.0 -1.26 = 8.7 g is called the amount in excess. The amount of water produced is determined by using the limiting reactant and converting it into water. 10.0 g O2 mole O2 2 mole H2O 18.0 g H2O = 11.3 g H2O 32.0 g O2 mole O2 mole H2O

Percentage Yield The percent yield is a comparison of the laboratory answer to the correct answer which is determined by the conversion process. Suppose a student combined 10.0 g of oxygen and 10.0 g of hydrogen in the lab and recovered 8.66 g of water. What would be the percent yield?

Percentage Yield The percent yield is a comparison of the laboratory answer to the correct answer which is determined by the conversion process. Suppose a student combined 10.0 g of oxygen and 10.0 g of hydrogen in the lab and recovered 8.66 g of water. What would be the percent yield? Yield (the lab amount) percent yield = X 100 Theoretical Yield (by conversions) 8.66 percent yield = X 100 = 76.6% 11.3

Thermochemical Equations When a chemical or physical change takes place energy is either lost of gained. A Thermochemical equation describes this change. Equations gaining energy are called endothermic and equations losing energy are called exothermic.

Thermochemical Equations When a chemical or physical change takes place energy is either lost of gained. A Thermochemical equation describes this change. Equations gaining energy are called endothermic and equations losing energy are called exothermic. Examples: C3H6O (l ) 4O2 (g) 3CO2(g) + 3 H2O (g) ΔH = -1790 kj Exothermic H2O (l) H2O (g) ΔH = 44.01 kj Endothermic

Thermochemical Conversions How many kj of heat are released when 709 g of C3H6O are burned?

Thermochemical Conversions How many kj of heat are released when 709 g of C3H6O are burned? C3H6O (l ) 4O2 (g) 3CO2(g) + 3 H2O (g) ΔH = -1790 kj 709 g C3H6O mole C3H6O 58.1 g C3H6O

Thermochemical Conversions How many kj of heat are released when 709 g of C3H6O are burned? C3H6O (l ) 4O2 (g) 3CO2(g) + 3 H2O (g) ΔH = -1790 kj 709 g C3H6O mole C3H6O 58.1 g C3H6O

Thermochemical Conversions How many kj of heat are released when 709 g of C3H6O are burned? C3H6O (l ) 4O2 (g) 3CO2(g) + 3 H2O (g) ΔH = -1790 kj 709 g C3H6O mole C3H6O 1790 kj = 21800 kj mole C3H6O 58.1 g C3H6O

The End