The Application of Redox-Active Ligands in Homogeneous Catalysis

Slides:



Advertisements
Similar presentations
157 T INTERNAL MAGNETIC FIELD IN Fe[C(SiMe 3 ) 3 ] 2 COMPOUND AT 20K Ernő Kuzmann, 1,2 Roland Szalay, 2 Attila Vértes, 1,2 Zoltán Homonnay, 2 Imre Pápai,
Advertisements

Inorganic Chemistry Laboratory
The Soil Chemical Environment Reading: General background: Sparks,Chapter 1, pp Additional: Essington, Chapter 1 pp
Ch 10 Lecture 3 Angular Overlap
Quadruply bonded M 2 complexes incorporating thienylvinyl carboxylates Carly R. Reed, Malcolm H. Chisholm, Claudia Turro th International Symposium.
Modeling of Ru and Fe based olefin metathesis Michael T. Feldmann Richard P. Muller William A. Goddard, III Materials and Process Simulation Center, Caltech.
Electron Spin Resonance Spectroscopy
Organometallic Chemistry. organometallics incorporating carbon-metal bonds have been known and studied for nearly 200 years their unique properties have.
Lewis Base Ligands -- Halides Common Misconception: The halides are anionic ligands, so they are NOT electron-withdrawing ligands. In organic chemistry.
Transition-metal Organometallics
Title: Lesson 6 Complex Ions Learning Objectives: Explain and use the terms ligand/complex/complex ion and ligand substitutions. Describe the formation.
Migratory Insertion & Elimination Rxns
Characterization of Organometallic Compounds Peter H.M. Budzelaar.
Macromolecular Science and Engineering Tuesday June 1 PM MA3 Regatta Advances In Olefin Polymerization Organizer - H. Zahalka Chair - H. Zahalka 13:30-14:00.
Ligand Substitution Reactivity of Coordinated Ligands Peter H.M. Budzelaar.
Oxidative Addition and Reductive Elimination Peter H.M. Budzelaar.
Dissociative Associative
Organometallic Chemistry an overview of structures and reactions Peter H.M. Budzelaar.
Spinel Structures. CFT aids in understanding the arrangements of metal ions in spinel structures (R.C. Chpt.12). READ R.C. WHERE SPINEL STRUCTURES ARE.
Alkenes/Alkynes Alkenes are typically relatively weakly coordinating ligands. They are also extremely important substrates for catalytic reactions.
INTRODUCTION OF D-BLOCK ELEMENTS. Why are they called d-block elements? Their last electron enters the d-orbital.
Complex N-Heterocycle Synthesis via Iron-Catalyzed, Direct C-H Bond Amination Elisabeth T. Hennessy & Theodore A. Betley* Science 2013, 340, 591 Also featured.
Quantum & Physical Chemistry Computational Coordination Chemistry HARDWARE Did you know that:  The quantum mechanical wave equations can nowadays be solved.
Christian R. Goldsmith Auburn University Department of Chemistry and Biochemistry.
Natural Gas: An Alternative to Petroleum? Crabtree, R. H. Chem. Rev. 1995, 95, American Methanol Institute, 2000 Natural gas reserves: ~ 60 years.
CHEM 522 Chapter 04 Carbonyl, Phosphine complexes and Ligand Substitution Reaction.
Hydrogenation Textbook H: Chapter 15.1 – 15.6 Textbook A: Chapter 14.1 – 14.2.
Reactions of organometallic complexes Textbook H: Chapter 5.1 – 5.5 Textbook A: Chapter 5.
Photoelectron Spectroscopy Study of Ta 2 B 6 − : A Hexagonal Bipyramidal Cluster Tian Jian, Wei-Li Li, Constantin Romanescu, Lai-Sheng Wang Department.
Silyl complexes: M-SiR 3 (R = alkyl, aryl, OR) First complex: CpFe(CO) 2 (SiMe 3 ), Wilkinson 1956 Trimethylsilyl (TMS) complexes are more numerous than.
EPR Study of Vanadyl Complexes
Co-ordination Chemistry Theories of Bonding in Co-ordination compound. 1. Valence Bond Theory 2. Crystal Field Theory 3. Molecular Orbital Theory.
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills You are aware of the importance of chirality. This course will focus on asymmetric.
ChE 553 Lecture 29 Catalysis By Metals 1. Objective Apply what we have learned to reactions on metal surfaces 2.
Song jin July 10, 2010 Gong Group Meeting.
Manfred Scheer Coordination Chemistry of Phosphorous Containing Compounds Angela Dann May 8, 2006.
CHBE 452 Lecture 28 Mechanism of Catalyst Action 1.
Antonio D. Brathwaite University of the Virgin Islands, St Thomas, USVI.
Why no  -H species into the enzyme? - no thermodynamic stabilization of terminal-H intermediates terminal-H corresponds to a kinetic product? But.
Outline Slide 1 Lecture 1 - Redox-Active Ligands: What Are They? How Do They Work? and How Might They Be Improved? Lecture 2 - The Development of a Highly.
Outline Slide 1 Lecture 1 - Redox-Active Ligands: What Are They? How Do They Work? and How Might They Be Improved? Lecture 2 - The Development of a Highly.
Rhodium-catalyzed hydroamination of olefin Baihua YE 06/06/2011.
Nitrogen–Carbon Bond Formation from N 2 and CO 2 Promoted by a Hafnocene Dinitrogen Complex Yields a Substituted Hydrazine Wesley H. Bernskoetter, Emil.
ChE 553 Lecture 30 Catalysis By Metals 1. Objective Examine the trends in bonding over the periodic table 2.
metal ion in a spherical
Chapter 9 Coordination Chemistry I
ChE 551 Lecture 29 Catalysis By Metals.
4. NITROGEN FIXATION.
NMR spectroscopy – key principles
Spin Transitions in Trigonal Bipyramid Clusters of Group 8 Metal Ions Catalina Achim, Department of Chemistry, Carnegie Mellon University The current.
Nuclear Pharmacy Lecture 1.
Fischer and Schrock Carbenes: A Brief Overview
Low-Valent Iron-Catalyzed Transformations of Unsaturated Hydrocarbons
Molecular Magnetic Switches
TRANSITION ELEMENTS.
Investigation of the Effect of Ligands on Metal-to-Ligand Charge Transfer Transitions using d10-complexes of Group 11 Elements Evangelos Rossis, Roy Planalp,
Ligand substitution reactions: dissociative
Investigating Copper-Thiophene Binding Interactions: Impact on the Desulfurization of Hydrocarbon Fuels by Adsorption Processes John T. York, Department.
Laura E. Pence, Department of Chemistry, University of Hartford
Syntheses of High-spin Molecules
New Transition Metal Catalysts for Selective C-H Oxidation Chemistry
Organometallic Chemistry
Magnetic Properties of Coordination Compounds
Invisible Ink 2[Co(H2O)6]Cl2(s) Co[CoCl4](s) + 12 H2O
Stability and Reactions of N-heterocyclic Carbenes
CHEM 251 INORGANIC CHEMISTRY Chapter 4.
Tunable σ-Accepting, Z-Type Ligands for Organometallic Catalysis
Organic Reactions Enabled by Catalytically Active Metal–Metal Bonds
Chapter 13 Lecture 1 Organometallic Ligands and Bonding
Organometallic Chemistry
Presentation transcript:

The Application of Redox-Active Ligands in Homogeneous Catalysis Ryan J. Trovitch DEPARTMENT OF CHEMISTRY & BIOCHEMISTRY

Outline Lecture 1 - Redox-Active Ligands: What Are They? How Do They Work? and How Might They Be Improved? Lecture 2 - The Development of a Highly Active Manganese Hydrosilylation Catalyst Lecture 3 - Hydrosilylation and Beyond: Expanding the Scope of Redox-Active Ligand Assisted Catalysts

Dewar-Chatt Model for Ethylene Coordination Neutral Dialkyl σ-donation π-backbonding Although coordinated ethylene may react like a dialkyl ligand, it is not redox-active since its π* orbital is not populated!

Conjugated Diene Ligands Neutral Enediyl η4-1,3-Butadiene coordination: Can be considered a redox-active ligand (singlet dianion shown) if electrons are fully transferred to Ψ3. This is different than backbonding!

(Triphos)Fe(COT) “the COT is fluxional and presumably η4-coordinated” Felkin, H.; Lednor, P. W.; Normant, J.-M.; Smith, R. A. J. J. Organomet. Chem. 1978, 157, C64-C66.

(Triphos)Fe(COT) “the COT is fluxional and presumably η4-coordinated” Felkin, H.; Lednor, P. W.; Normant, J.-M.; Smith, R. A. J. J. Organomet. Chem. 1978, 157, C64-C66. Can (Triphos)Fe(COT) be prepared from cheaper starting materials than Fe(COT)2? COT has been shown to coordinate to transition metals in an η2-, η3-, η4-, η5-, η6-, and η8-fashion. What is the true hapticity of the COT ligand? What is the correct electronic structure description of (Triphos)Fe(COT)?

Dihalide Starting Materials 1H NMR (THF-d8, 23˚C, ppm): 98.38 (CH2), 43.10 (CH2), 34.24 (CH2), 26.20 (CH2) Magnetic Susceptibility (Gouy Balance): μeff = 4.8 μB [HS Fe(II)] 1H NMR (THF-d8, 23˚C, ppm): -19.34 (CH2), -24.32 (CH2), -46.02 (CH2), -49.62 (CH2) Magnetic Susceptibility (Gouy Balance): μeff = 4.3 μB [IS Fe(III)]

(Triphos)FeBr3 Magnetic Susceptibility (Gouy Balance): μeff = 5.6 μB [HS Fe(III)]

(Triphos)FeBr3 Magnetic Susceptibility (Gouy Balance): μeff = 5.6 μB [HS Fe(III)] 450 Hz at ½ height 31P NMR

Reduction Under N2 Prepared from (Triphos)FeCl3 and (Triphos)FeBr3 (also with K0) Addition of Triphos improves yield, complicates purification Connectivity/Geometry Confirmed by XRD LS Fe(0) 31P NMR

(Triphos)Fe(COT) 1H NMR (C6D6, 23˚C, ppm): 4.93 (s, COT) 31P NMR (C6D6, 23˚C, ppm): 116.33 (t), 95.71 (d) Diamagnetic…. Low-spin Fe(0)?

(Triphos)Fe(COT) Fe(1)-P(1) 2.1903(4) Fe(1)-P(2) 2.1758(4) Fe(1)-P(3) 2.1913(4) Fe(1)-C(40) 2.2170(14) Fe(1)-C(41) 2.0332(14) Fe(1)-C(42) 2.0302(14) Fe(1)-C(35) 2.1978(14) C(40)-C(41) 1.432(2) C(41)-C(42) 1.402(2) C(42)-C(35) P(2)-Fe(1)-C(35) 88.79(4) P(2)-Fe(1)-C(40) 171.60(4) P(1)-Fe(1)-P(3) 98.434(15)

A Closer Look 1.402(2) 1.432(2) 1.432(2) 1.448(2) 1.446(2) 1.358(2) 1.355(2) 1.425(2)

A Closer Look 1.402(2) 1.432(2) 1.432(2) 1.448(2) 1.446(2) 1.358(2) 1.355(2) 1.425(2) The solid-state structure suggests that this complex features a COT radical monoanion that is antiferromagnetically coupled to a low-spin Fe(I) center.

A Well-Understood Non-Innocent Chelate Neutral Radical Monoanion Dianion

A Well-Understood Non-Innocent Chelate Neutral Radical Monoanion Dianion Will 2,2’-bipyridine accept one electron upon coordinating to (Triphos)Fe? Will the resulting product possess the same electronic structure as (Triphos)Fe(COT)?

(Triphos)Fe(bpy) 31P NMR (C6D6, 23˚C, ppm): 112.93 (t), 91.59 (d) Diamagnetic…. Low-spin Fe(0)?

(Triphos)Fe(bpy) 31P NMR (C6D6, 23˚C, ppm): 112.93 (t), 91.59 (d) Diamagnetic…. Low-spin Fe(0)? Fe(1)-P(1) 2.1628(8) Fe(1)-P(2) 2.1608(8) Fe(1)-P(3) 2.2045(8) Fe(1)-N(1) 1.956(2) Fe(1)-N(2) 1.936(2) N(1)-C(5) 1.383(3) N(2)-C(6) 1.399(3) C(5)-C(6) 1.420(4) P(1)-Fe(1)-P(3) 116.38(3) N(2)-Fe(1)-P(1) 104.83(7) N(1)-Fe(1)-P(1) 95.43(7) P(2)-Fe(1)-P(1) 85.02(3)

(Triphos)Fe(bpy) 1.391(3) Å 1.431(3) Å 1.388(3) Å Gore-Randall, E.; Irwin, M.; Denning, M. S.; Goicoechea, J. M. Inorg. Chem. 2009, 48, 8304-8316.

(Triphos)Fe(bpy) XRD 1.391(3) Å 1.431(3) Å 1.388(3) Å Gore-Randall, E.; Irwin, M.; Denning, M. S.; Goicoechea, J. M. Inorg. Chem. 2009, 48, 8304-8316. XRD 1.399(3) Å 1.420(4) Å 1.383(3) Å

(Triphos)Fe(bpy) XRD 1.372(3) Å 1.405(3) Å 1.336(3) Å 1.363(3) Å 1.391(3) Å 1.427(3) Å 1.431(3) Å 1.388(3) Å 1.428(3) Å 1.338(3) Å 1.366(3) Å 1.374(3) Å 1.403(4) Å Gore-Randall, E.; Irwin, M.; Denning, M. S.; Goicoechea, J. M. Inorg. Chem. 2009, 48, 8304-8316. 1.366(4) Å 1.408(4) Å 1.366(4) Å XRD 1.336(3) Å 1.399(3) Å 1.401(4) Å 1.420(4) Å 1.383(3) Å 1.409(4) Å 1.361(3) Å 1.355(4) Å 1.360(4) Å 1.412(4) Å

(Triphos)Fe(bpy) XRD Low-spin Fe(I) antiferromagnetically 1.372(3) Å 1.405(3) Å 1.336(3) Å 1.363(3) Å 1.391(3) Å 1.427(3) Å 1.431(3) Å 1.388(3) Å 1.428(3) Å 1.338(3) Å 1.366(3) Å 1.374(3) Å 1.403(4) Å Gore-Randall, E.; Irwin, M.; Denning, M. S.; Goicoechea, J. M. Inorg. Chem. 2009, 48, 8304-8316. 1.366(4) Å 1.408(4) Å 1.366(4) Å XRD 1.336(3) Å 1.399(3) Å 1.401(4) Å Low-spin Fe(I) antiferromagnetically coupled to (bpy•-) 1.420(4) Å 1.383(3) Å 1.409(4) Å 1.361(3) Å 1.355(4) Å 1.360(4) Å 1.412(4) Å

(Triphos)Fe(bpy) Electrochemistry XRD Low-spin Fe(I) 1.420(4) Å 1.399(3) Å Low-spin Fe(I) antiferromagnetically coupled to (bpy•-) 1.420(4) Å 1.383(3) Å

(Triphos)Fe(bpy) Electrochemistry DFT XRD Low-spin Fe(I) 1.399(3) Å Low-spin Fe(I) antiferromagnetically coupled to (bpy•-) 1.420(4) Å 1.383(3) Å

Mössbauer Comparison δ = 0.013 mm/s ΔEQ = 2.19 mm/s δ = 0.106 mm/s

Mössbauer Comparison Low-spin Fe(I) antiferromagnetically coupled to (COT•-) δ = 0.086 mm/s ΔEQ = 1.08 mm/s δ = 0.013 mm/s ΔEQ = 2.19 mm/s δ = 0.106 mm/s ΔEQ = 1.16 mm/s

EPR Confirmation Triplet eigenstates: Ψ1, Ψ2, Ψ3 Singlet eigenstate: Ψ4 Low-spin Fe(I) antiferromagnetically coupled to (COT•-) σ = 2.3% Consistent with a strong dipolar interaction between two unpaired spins that are within close proximity of one another.

COT as a Redox-Active Ligand ~ 40 η4-COT complexes characterized by XRD. Several feature a disordered COT ligand (unreliable C-C distances) Do any possess a COT radical anion?

COT as a Redox-Active Ligand ~ 40 η4-COT complexes characterized by XRD. Several feature a disordered COT ligand (unreliable C-C distances) Do any possess a COT radical anion? ? 1.415(5) 1.382(6) 1.429(6) μeff = 2.87 μB Lavallo, V.; El-Batta, A.; Bertrand, G.; Grubbs, R. H. Angew. Chem. Int. Ed. 2011, 50, 268-271.

COT as a Redox-Active Ligand ~ 40 η4-COT complexes characterized by XRD. Several feature a disordered COT ligand (unreliable C-C distances) Do any possess a COT radical anion? ? 1.437(4) 1.398(4) 1.429(4) Brennessel, W. W.; Young, Jr., V. G.; Ellis, J. E. Angew. Chem. Int. Ed. 2002, 41, 1211-1215.

Outline Lecture 1 - Redox-Active Ligands: What Are They? How Do They Work? and How Might They Be Improved? Lecture 2 - The Development of a Highly Active Manganese Hydrosilylation Catalyst Lecture 3 - Hydrosilylation and Beyond: Expanding the Scope of Redox-Active Ligand Assisted Catalysts

Traditional Coordination Compounds Precious Metals Two Electron Reaction Pathways Observed

Traditional Coordination Compounds Precious Metals Two Electron Reaction Pathways Observed First Row Metals One Electron Reaction Pathways Observed

Overcoming Radical Pathways Precatalyst Preparation: Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004, 126, 13794. Hydrogenation:

Overcoming Radical Pathways Precatalyst Preparation: Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004, 126, 13794. Hydrogenation: [2π+2π] Cyclization: Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128, 13340.

PDI Ligand Redox Activity Neutral Radical Monoanion Dianion Lowest energy PDI π* orbital is often close in energy to the metal d-obritals.

How Does Redox-Activity Help? [2π+2π] Cyclization: Reductive Elimination Ligand Substitution Reductive C-C Bond Formation Iron Center Remains Divalent! Chirik, P. J.; Wieghardt, K. Science 2010, 327, 794.

Outline Lecture 1 - Redox-Active Ligands: What Are They? How Do They Work? and How Might They Be Improved? Lecture 2 - The Development of a Highly Active Manganese Hydrosilylation Catalyst Lecture 3 - Hydrosilylation and Beyond: Expanding the Scope of Redox-Active Ligand Assisted Catalysts

Catalyst Design Inspiration Donor Substituted Redox-Active Ligands Might: - Obviate the Need for Steric Bulk in Catalyst Design - Improve Activity by Stabilizing High Energy Catalytic Intermediates - Participate in Bifunctional Catalysis

Chelate Preparation Hagit Ben-Daat

Chelate Preparation - Easy to Prepare - Highly Modular Hagit Ben-Daat

Rh  Diamagnetic, Well-Investigated 1H and 13C NMR indicate top to bottom ligand equivalence Hagit Ben-Daat

Rh  Backbonding Over Redox-Activity Rh(1)-N(1) 2.030(3) Rh(1)-N(2) 1.884(3) Rh(1)-N(3) Rh(1)-Cl(1) 2.3476(9) N(1)-C(2) 1.316(4) N(3)-C(8) 1.303(4) C(2)-C(3) 1.452(5) C(7)-C(8) 1.467(4) N(1)-Rh(1)-N(2) 79.76(11) N(1)-Rh(1)-N(3) 159.19(11) N(2)-Rh(1)-N(3) 79.44(11) N(2)-Rh(1)-Cl(1) 178.68(8) Rh(1)-N(1) 2.030(3) Rh(1)-N(2) 1.889(3) Rh(1)-N(3) 2.032(3) Rh(1)-Cl(1) 2.3621(9) N(1)-C(2) 1.316(5) N(3)-C(8) 1.303(5) C(2)-C(3) 1.462(5) C(7)-C(8) 1.475(5) N(1)-Rh(1)-N(2) 79.27(13) N(1)-Rh(1)-N(3) 159.13(12) N(2)-Rh(1)-N(3) 79.86(7) N(2)-Rh(1)-Cl(1) 176.92(9) Hagit Ben-Daat

Rh  Backbonding Over Redox-Activity Rh(1)-N(1) 2.030(3) Rh(1)-N(2) 1.884(3) Rh(1)-N(3) Rh(1)-Cl(1) 2.3476(9) N(1)-C(2) 1.316(4) N(3)-C(8) 1.303(4) C(2)-C(3) 1.452(5) C(7)-C(8) 1.467(4) N(1)-Rh(1)-N(2) 79.76(11) N(1)-Rh(1)-N(3) 159.19(11) N(2)-Rh(1)-N(3) 79.44(11) N(2)-Rh(1)-Cl(1) 178.68(8) Rh(1)-N(1) 2.030(3) Rh(1)-N(2) 1.889(3) Rh(1)-N(3) 2.032(3) Rh(1)-Cl(1) 2.3621(9) N(1)-C(2) 1.316(5) N(3)-C(8) 1.303(5) C(2)-C(3) 1.462(5) C(7)-C(8) 1.475(5) N(1)-Rh(1)-N(2) 79.27(13) N(1)-Rh(1)-N(3) 159.13(12) N(2)-Rh(1)-N(3) 79.86(7) N(2)-Rh(1)-Cl(1) 176.92(9) Due to radial expansion (vs. first row metals), Rh d-orbitals backbond efficiently into the π* orbital of PDI, destabilizing it such that it remains unoccupied. Hagit Ben-Daat

Enabling Amine Coordination Variable temperature NMR spectroscopy revealed slow arm exchange at ambient temperature. Hagit Ben-Daat

Enabling Amine Coordination Variable temperature NMR spectroscopy revealed that chelate arm exchange is fast at ambient temperature. Hagit Ben-Daat

Crystallographic Evidence Rh(1)-N(1) 2.016(2) Rh(1)-N(2) 1.902(2) Rh(1)-N(3) 2.084(2) Rh(1)-N(4) 2.143(2) N(1)-C(2) 1.309(3) N(3)-C(8) 1.305(3) C(2)-C(3) 1.460(4) C(7)-C(8) 1.475(4) N(1)-Rh(1)-N(2) 79.52(9) N(1)-Rh(1)-N(3) 157.74(9) N(2)-Rh(1)-N(3) 78.49(9) N(2)-Rh(1)-N(4) 173.11(9) κ4-N,N,N,N-PDI coordination observed Hagit Ben-Daat

Stronger Field Chelate Arms 31P NMR (DMSO-d6, ppm): 43.64 (d, JRhP = 135 Hz) Hagit Ben-Daat

Stronger Field Chelate Arms 31P NMR (DMSO-d6, ppm): 43.64 (d, JRhP = 135 Hz) 31P NMR (DMSO-d6, ppm): 42.42 (d, JRhP = 135 Hz) Hagit Ben-Daat

Stronger Field Chelate Arms 31P NMR (DMSO-d6, ppm): 32.88 ppm (d, JRhP = 138 Hz) Hagit Ben-Daat

Stronger Field Chelate Arms 31P NMR (DMSO-d6, ppm): 32.88 ppm (d, JRhP = 138 Hz) 1H NMR (DMSO-d6, ppm): 4.33 (m, COD), 2.37 (m, COD) 31P NMR (DMSO-d6, ppm): 31.63 (d, JRhP = 138 Hz) Hagit Ben-Daat

Stronger Field Chelate Arms 31P NMR (DMSO-d6, ppm): 32.88 ppm (d, JRhP = 138 Hz) κ5-PDI coordination observed for Et- and Pr- bridged PDI chelates 1H NMR (DMSO-d6, ppm): 4.33 (m, COD), 2.37 (m, COD) 31P NMR (DMSO-d6, ppm): 31.63 (d, JRhP = 138 Hz) Hagit Ben-Daat

[(Ph2PPrPDI)Rh][(COD)RhCl2] Rh(1)-N(1) 2.029(3) Rh(1)-N(2) 1.926(3) Rh(1)-N(3) 2.046(3) Rh(1)-P(1) 2.2926(9) Rh(1)-P(2) 2.3101(10) N(1)-C(2) 1.335(5) N(3)-C(8) 1.322(5) C(2)-C(3) 1.427(5) C(7)-C(8) 1.435(5) N(1)-Rh(1)-N(2) 78.95(12) N(1)-Rh(1)-N(3) 157.10(12) N(2)-Rh(1)-P(1) 119.79(8) N(2)-Rh(1)-P(2) 141.15(8) P(1)-Rh(1)-P(2) 99.06(3) Hagit Ben-Daat

[(Ph2PPrPDI)Rh][(COD)RhCl2] Rh(1)-N(1) 2.029(3) Rh(1)-N(2) 1.926(3) Rh(1)-N(3) 2.046(3) Rh(1)-P(1) 2.2926(9) Rh(1)-P(2) 2.3101(10) N(1)-C(2) 1.335(5) N(3)-C(8) 1.322(5) C(2)-C(3) 1.427(5) C(7)-C(8) 1.435(5) N(1)-Rh(1)-N(2) 78.95(12) N(1)-Rh(1)-N(3) 157.10(12) N(2)-Rh(1)-P(1) 119.79(8) N(2)-Rh(1)-P(2) 141.15(8) P(1)-Rh(1)-P(2) 99.06(3) Increased covalency, ligand remains redox-innocent! Hagit Ben-Daat

Summary Lecture 1 - Redox-Active Ligands: What Are They? How Do They Work? and How Might They Be Improved? COT, Bpy, and PDI all behave as redox-active ligands

Summary Lecture 1 - Redox-Active Ligands: What Are They? How Do They Work? and How Might They Be Improved? COT, Bpy, and PDI all behave as redox-active ligands PDI ligands can aid catalysis by reversibly storing electrons

Summary Lecture 1 - Redox-Active Ligands: What Are They? How Do They Work? and How Might They Be Improved? COT, Bpy, and PDI all behave as redox-active ligands PDI ligands can aid catalysis by reversibly storing electrons Electron transfer not observed for Rh due to radial expansion