data on marble: what and where

Slides:



Advertisements
Similar presentations
Successful Strategies for Overcoming the Obstacles in Acquisition, Management, and Analysis of CMIP5 Data Jennifer Miletta Adams IGES/COLA AMS 2013.
Advertisements

Climate Analytics on Global Data Archives Aparna Radhakrishnan 1, Venkatramani Balaji 2 1 DRC/NOAA-GFDL, 2 Princeton University/NOAA-GFDL 2. Use-case 3.
Modeling Past and Future Climate Changes
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology Update on Cordex-AustralAsia domain Bertrand.
Experiments with Monthly Satellite Ocean Color Fields in a NCEP Operational Ocean Forecast System PI: Eric Bayler, NESDIS/STAR Co-I: David Behringer, NWS/NCEP/EMC/GCWMB.
Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
WP12. Hindcast and scenario studies on coastal-shelf climate and ecosystem variability and change Why? (in addition to the call text) Need to relate “today’s”
Climate modeling Current state of climate knowledge – What does the historical data (temperature, CO 2, etc) tell us – What are trends in the current observational.
CLIMATE SCIENTISTS’ BIG CHALLENGE: REPRODUCIBILITY USING BIG DATA Kyo Lee, Chris Mattmann, and RCMES team Jet Propulsion Laboratory (JPL), Caltech.
Overview of Coupled Model Intercomparison Project (CMIP) and IPCC AR5 Activities Ronald J Stouffer Karl Taylor, Jerry Meehl and many others June 2009.
Graphical Representation of Climate Model Architecture Kaitlin Alexander, University of Manitoba Steve Easterbrook, University of Toronto.
Introduction to Hands On Training in CORDEX South Asia Data Analysis
Climate Modeling Jamie Anderson May Monitoring tells us how the current climate has/is changing Climate Monitoring vs Climate Modeling Modeling.
CENSAM Annual Workshop, 29 June 2015 Regional Climate Analyses over Southeast Asia Dr. Sri Raghavan Mr.Liu Jiandong, Dr.Nguyen Ngoc Son, Dr.Vu Minh Tue,
© Crown copyright Met Office AR5 Proposed runs for CMIP5 John Mitchell, after Karl Taylor, Ron Stouffer and others ENES, arch 2009.
Environment Canada Environnement Canada Effects of elevated CO 2 on modelled ENSO variability Bill Merryfield Canadian Centre for Climate Modelling and.
Testing LW fingerprinting with simulated spectra using MERRA Seiji Kato 1, Fred G. Rose 2, Xu Liu 1, Martin Mlynczak 1, and Bruce A. Wielicki 1 1 NASA.
The evolution of climate modeling Kevin Hennessy on behalf of CSIRO & the Bureau of Meteorology Tuesday 30 th September 2003 Canberra Short course & Climate.
Chaiwat Ekkawatpanit, Weerayuth Pratoomchai Department of Civil Engineering King Mongkut’s University of Technology Thonburi, Bangkok, Thailand Naota Hanasaki.
1 Adventures in Web Services for Large Geophysical Datasets Joe Sirott PMEL/NOAA.
Coordinated climate change experiments to be assessed as part of the IPCC AR5 Gerald A. Meehl National Center for Atmospheric Research Boulder, Colorado.
(Mt/Ag/EnSc/EnSt 404/504 - Global Change) Future Directions (for the AR5) Future Directions in Globally Coordinated Climate Change Research Primary Sources:
Using atmospheric CO2 data More than 100 CO2 records Use LMDz model as an “offline” transport tool based on “retro-plumes” (pre-calculated response function)
Intraseasonal, seasonal, and interannual variations of the Arctic temperature in paleoclimates, present, and future experiments in CMIP5 model outputs.
WP11 Model performance assessment and initial fields for scenarios. Objectives and deliverables To determine, how well biogeochemical ocean general circulation.
WGCM19 Report from the French groups
Sea Ice Component Description Number of historical ensemble members
Chapter 2 Projection of Future Climate Scenarios
Seasonal Arctic heat budget in CMIP5 models
Quantifying rapid adjustments using radiative kernels
Global Impacts and Consequences of Climate Change
Contributing Centres to S2S database
Climate Change Climate change scenarios of the
Mid Term II Review.
DIALOGUE ON CLIMATE CHANGE
Australian CMIP6 Modelling Plans ACCESS-CM2/ESM2
Detection and attribution of long-term change (“trend” detection)
Intro to CMIP, the WHOI CMIP5 community server, and planning for CMIP6
Uncertainties and climate simulation ensembles
Chia Fuk Jing & Mubasher Hussain Hydro Department July 03, 2017
Sensitivity of precipitation extremes to ENSO variability
Ruth Doherty, Edinburgh University Adam Butler & Glenn Marion, BioSS
Regional Climate Model Projections Update
Introduction to FERRET
Visualizing Intermodel Comparison
WFM 6311: Climate Change Risk Management
RCM workshop, Meteo Rwanda, Kigali
Instrumental Surface Temperature Record
Radiative biases in Met Office global NWP model
Impact of Solar and Sulfate Geoengineering on Surface Ozone
Presented by: Javed Akhter1 Contributors: Lalu Das 2and Monami Dutta2
GFDL Climate Model Status and Plans for Product Generation
USAEE Conference 2016, October 26, Tulsa, Oklahoma, USA
Ronald J Stouffer Karl Taylor, Jerry Meehl and many others
IPCC Climate Change Report
Alfredo Ruiz-Barradas Sumant Nigam
Analysis of automated circulation classifications
The Arctic Ocean in CMIP5 Simulations
Adam Butler & Glenn Marion, Biomathematics & Statistics Scotland •
Instrumental Surface Temperature Record
National Center for Atmospheric Research
Long Range Forecast Transient Intercomparison Project (LRFTIP-A)
Production and use of regional climate model projections at the Swedish Meteorological and Hydrological Institute Erik Kjellström Rossby Centre,
Contribution of Black Carbon Aerosol to Drying of the Mediterranean
National Center for Atmospheric Research
1 GFDL-NOAA, 2 Princeton University, 3 BSC, 4 Cerfacs, 5 UCAR
Earth Climate System Model of INM RAS
ARCCSSive Scott Wales & Paola Petrelli ARCCSS CMS
Water vapour changes in PDRMIP simulations
ECMWF usage, governance and perspectives
Presentation transcript:

data on marble: what and where how to process (visualise, analyse, etc) the data: ncdump, python, ferret, ...

: what ??? data, what? cmip3 (IPCC-AR4) cmip5 (IPCC-AR5) cmip5_25x25 MIP == Model Intercomparision Project The homepage of the Coupled Model Intercomparison Project (CMIP). Here you find links to CMIP Phase 3 (CMIP3) and CMIP Phase 5 (CMIP5). Recommended is the Guide to CMIP5 where you find also links to other MIPs like GeoMIP. GeoMIP Geoengineering - sres special report on emission scenarios – rpc representation concentration pathway

: where ??? data, where? data_dir = /data/marble CMIP3: data_dir/cmip3/IPCC_AR4/list (list with (soon) available data) CMIP5: data_dir/cmip5/experiment/temporal-resolution/variable/model/realisation/*.nc CMIP5_25x25: same like cmip5; 25×25 indicates the regular horizontal grid of 2.5×2.5 deg GeoMIP: data_dir/GeoMIP/experiment/temporal-resolution/mon/variable /institution/model/realisation/*.nc

: what and where ??? data_dir/cmip5/experiment/ CMIP5-experiments: piControl, rcp26, rcp45, rcp60, rcp85, historical, historicalExt, historicalGHG, historicalMisc, historicalNat, 1pctCO2, abrupt4xCO2, esmFdbk1, esmFixClim2, esmHistorical, esmrcp85, amip GeoMIP-experiments: piControl, rcp45, 1pctCO2, abrupt4xCO2, db, G1, G1oceanAlbedo, G2, G3, G3S, G4, G4cdnc, G5 data_dir/cmip5/experiment/temporal-resolution/ As temporal resolution we have at our disposal: monthly data from the Atmosphere, Ocean and Land (Amon, Omon and Lmon) and fixed data (fx) containing e.g. area (areacello) and volume (volcello) information about the model. data_dir/cmip5/experiment/temporal-resolution/variable/ e.g. ~$ ls /data/marble/cmip5/piControl/Omon: fgco2 hfds so thetao tos zos zostoga e.g. ~$ ls /data/marble/GeoMIP/piControl/Amon/mon: cSoil lai pr ra rsdt so tasmax thetao ts gpp orog prsn rlut rsut tas tasmin tos zos Two useful pdf-files about the model experiments and variables: experiment controlled vocabulary and standard_output. The latter is quite comprehensive and is reduced to our available variables (based on the pre-industrial control experiment (piControl)): standard_output_red.xlsx (this list also holds for our GeoMIP data). e.g. fgco2 downward CO2 flux at ocean surface (positive into the ocean) – hfds downward net heat flux into the ocean (positive net ocean heat gain) – gpp gross primary carbon production on land

: what and where ??? data_dir/cmip5/experiment/temporal-resolution/variable/model/ e.g. $ ls /data/marble/cmip5/piControl/Amon/ts: ACCESS1-0 CESM1-CAM5-1-FV2 FGOALS-g2 GISS-E2-R-CC MIROC5 ACCESS1-3 CESM1-FASTCHEM FGOALS-s2 HadGEM2-AO MIROC-ESM bcc-csm1-1 CESM1-WACCM FIO-ESM HadGEM2-CC MIROC-ESM-CHEM bcc-csm1-1-m CMCC-CESM GFDL-CM3 HadGEM2-ES MPI-ESM-LR BNU-ESM CMCC-CM GFDL-ESM2G inmcm4 MPI-ESM-MR CanESM2 CMCC-CMS GFDL-ESM2M IPSL-CM5A-LR MPI-ESM-P CCSM4 CNRM-CM5 GISS-E2-H IPSL-CM5A-MR MRI-CGCM3 CESM1-BGC CNRM-CM5-2 GISS-E2-H-CC IPSL-CM5B-LR NorESM1-M CESM1-CAM5 CSIRO-Mk3-6-0 GISS-E2-R MIROC4h NorESM1-ME CMIP5_modeling_groups.pdf data_dir/cmip5/experiment/temporal-resolution/variable/model/realisation/*.nc e.g. $ ls /data/marble/cmip5/historical/Omon/zostoga/ACCESS1-3: r1i1p1 r2i1p1 r3i1p1 (you always can check the availability of data with e.g. 'ls /data/marble/cmip5/* > out.dat')

: what and where ??? example file (3d, x,y,t) time series at each areal grid-point cd /data/marble/cmip5/rcp85/Omon/hfds/ACCESS1-0/r1i1p1 ~$ ls -> hfds_Omon_ACCESS1-0_rcp85_r1i1p1_200601-210012.nc example file (4d, x,y,z,t) time series at each volumetric grid point cd /data/marble/cmip5/rcp85/Omon/thetao/ACCESS1-0/r1i1p1 -> thetao_Omon_ACCESS1-0_rcp85_r1i1p1_200601-201012.nc thetao_Omon_ACCESS1-0_rcp85_r1i1p1_201101-201512.nc ...

... some plots ... 1/ hfds_Omon_ACCESS1-0_rcp85_200601_210012.nc 2/ hfds_Omon_ACCESS1-0_rcp85_200601_210012.nc 3/ thetao_Omon_ACCESS1-0_historical_r1i1p1_200001_200412.nc 4/ zostoga_Omon_ACCESS1-0_historical_r1i1p1_185001-200512.nc hfds

: netcdf ??? netCDF: network Common Data Form info faq meta-data: ~$ ncdump –h file_name example: ~$ ncdump –h /data/marble/cmip5/rcp45/Omon/zostoga/ACCESS1-0/r1i1p1/zostoga_Omon_ACCESS1-0_rcp45_r1i1p1_200601-210012.nc netcdf zostoga_Omon_ACCESS1-0_rcp45_r1i1p1_200601-210012 { dimensions: time = UNLIMITED ; // (1140 currently) bnds = 2 ; variables: double time(time) ; time:bounds = "time_bnds" ; time:units = "days since 0001-01-01" ; double time_bnds(time, bnds) ; float zostoga(time) ; zostoga:standard_name = "global_average_thermosteric_sea_level_change" ; raw-data: ~$ ncdump –v variable_name file_name example: ~$ ncdump –vzostoga /data/marble/cmip5/rcp45/Omon/zostoga/ACCESS1-0/r1i1p1/ostoga_Omon_ACCESS1-0_rcp45_r1i1p1_200601-210012.nc zostoga = 0.05949634, 0.06122969, 0.06356658, 0.06492361, 0.06417097, 0.06184246, 0.05911458, 0.05761012, .... Typically you would use ncview to get a quick and easy, push-button look at your netCDF files. NO data analysis tool

: netcdf ??? first visualisation step: ~$ ncview file_name e.g. ~$ ncview /data/marble/GeoMIP/piControl/Amon/mon/ra/NASA-GISS/ GISS-E2-R/r1i1p1/ra_Lmon_GISS-E2-R_piControl_r1i1p1_185001-191912.nc non-script-based netcdf_software panoply

data visualization with ferret What data means without proper visualization? Unprocessed data is bunch of jargon to many. Cleansing can make it edible. And yes, not everyone is a data scientist: data visualization with ferret ferret_users_guide start ferret: ~$ ferret -nojnl load data: yes? use "file_dir/file_name show data: yes? sh  variable_name plot data[1d]: yes? plot variable_name shade data[2d]: yes? shade variable_name[i=,j=,z=,t=] make (non-weighted) averages: yes? variable_name[i=@ave] visualising data tool – limited analysis tool – script-based

(/home/UNIMELB/kdommenget/ferret_scripts/examples) ferret examples for shading, plot a time series and profile plot and how to remove the seasonal climatology (/home/UNIMELB/kdommenget/ferret_scripts/examples) 1/ shading_tave_ex.jnl, 2/ plot_tseries_aave_ex.jnl, 3/ plot_tave_profile_ex.jnl, 4/ rem_seasonal_clim_ex.jnl 1/ shading_tave_ex.jnl ca da/all ca var/all !""" contours/shades from your monthly time series, based on: """ !""" usage go shade_tave_ex.jnl dir file_name var_name tb te """ !dir = /data/marble/cmip5/rcp85/Omon/hfds/ACCESS1-0/r1i1p1 !file_name = hfds_Omon_ACCESS1-0_rcp85_r1i1p1_200601-210012.nc !var_name = hfds !tb = 2006 !te = 2100 define symb dir = $1 define symb file_name = $2 define symb var_name = $3 define symb te = $4 define symb tb = $5 !""" example data set: monthly downward heat flux at sea water surface (in W/m**2) """ !""" comment: this is the net heat entering the liquid water column through its upper surface. """ use "($dir)/($file_name)" !""" (optional) set the time range of data ""“ efine axis/calendar=gregorian/t="15-jan-($tb)":"15-dec-($te)":1/unit=months tmon let var_name_of_interest = ($var_name)[gt=tmon@asn] !""" compute the temporal mean """ let var_name_ave = var_name_of_interest[l=@ave] !""" contour/shade variable """ shade/lev="(-inf)(-100,100,20)(inf)" var_name_ave, lon, lat !""" save file """ frame/file=test.gif sp convert test.gif shade_tave_ex.pdf sp \rm test.gif] 2/ plot_tseries_ex.jnl ca da/all ca var/all !""" plots your monthly time series, based on: """ !""" usage go plot_tseries_ex.jnl dir file_name var_name tb te """ !dir = /data/marble/cmip5/rcp85/Omon/hfds/ACCESS1-0/r1i1p1 !file_name = hfds_Omon_ACCESS1-0_rcp85_r1i1p1_200601-210012.nc !var_name = hfds !tb = 2006 !te = 2100 define symb dir = $1 define symb file_name = $2 define symb var_name = $3 define symb te = $4 define symb tb = $5 !""" example data set: monthly downward heat flux at sea water surface (in W/m**2) """ !""" comment: this is the net heat entering the liquid water column through its upper surface. """ use "($dir)/($file_name)" !""" (optional) set the time range of data ""“ let var_name_of_interest = ($var_name)[gt=tmon@asn] !""" plot variable """ let/title="global mean" var_gm=var_name_of_interest[i=@ave,j=@ave,l=@shn:23] let/title="cold tongue" var_ct=var_name_of_interest[i=150,j=150,l=@shn:23] let/title="Labrador Sea" var_ls=var_name_of_interest[i=225,j=230,l=@shn:23] plot var_gm, var_ct, var_ls !""" save file """ frame/file=test.gif sp convert test.gif plot_tseries_ex.pdf sp \rm test.gif 3/ plot_tave_profile_ex.jnl ca da/all ca var/all !""" plots profile from your monthly time series, based on: """ !""" usage go plot_tave_profile.jnl dir file_name var_name tb te """ !dir = /data/marble/cmip5/historical/Omon/thetao/ACCESS1-0/r1i1p1 !file_name = thetao_Omon_ACCESS1-0_thetao_r1i1p1_185001-200512.nc !var_name = thetao !tb = 2000 !te = 2004 define symb dir = $1 define symb file_name = $2 define symb var_name = $3 define symb te = $4 define symb tb = $5 !""" example data set: monthly potential temperature (in K) """ use "($dir)/($file_name)" !""" (optional) set the time range of data ""“ define axis/calendar=gregorian/t="15-jan-($tb)":"15-dec-($te)":1/unit=months tmon let var_name_of_interest = ($var_name)[gt=tmon@asn] !""" define depths levels """ let zz = z[gz=var_name_of_interest] define axis/z/units=m/depth zlevn = zz !""" plot variable """ let/title='global mean' var_gm=var_name_of_interest[i=@ave,j=@ave,l=25:36@ave,gz=zlevn@asn]-273.15 let/title='cold tongue' var_ct=var_name_of_interest[i=150,j=150,l=@ave,gz=zlevn@asn]-273.15 let/title='Labrador Sea' var_ls=var_name_of_interest[i=225,j=230,l=@ave,gz=zlevn@asn]-273.15 plot var_gm, var_ct, var_ls !""" save file """ frame/file=test.gif sp convert test.gif plot_tave_profile.pdf sp \rm test.gif 4/ rem_seasonal_clim_ex.jnl ca da/all ca var/all !""" removes seasonal climatology (climatological annual cycle) from your monthly time series, based on: """ !""" http://ferret.pmel.noaa.gov/static/FAQ/analysis/climatologies.html """ !""" usage go remove_seasonal_clim.jnl dir file_name var_name tb te """ !dir = /data/marble/cmip5/historical/Omon/zostoga/ACCESS1-0/r1i1p1 !file_name = zostoga_Omon_ACCESS1-0_historical_r1i1p1_185001-200512.nc !var_name = zostoga !tb = 1850 !te = 2005 define symb dir = $1 define symb file_name = $2 define symb var_name = $3 define symb te = $4 define symb tb = $5 !""" example data set: monthly global mean thermosteric sea level """ use "($dir)/($file_name)" !""" get the climatological axis that you want to use """ !""" here we will use the pre-defined axis ("month-reg") """ use climatological_axes cancel data climatological_axes !""" (optional) set the time range of data to be used in the climatology """ define axis/calendar=gregorian/t="15-jan-($tb)":"15-dec-($te)":1/unit=months tmon let var_name_of_interest = ($var_name)[gt=tmon@asn] !""" compute the climatology """ let var_name_climatology = var_name_of_interest[gt=month_reg@mod] !""" subtract to get the anomaly """ !""" regrid the anomaly back to the original time axis using @asn to guarantee success """ !""" (subtle interpolation errors may occur on irregular time axes if the @asn regridding isn't done.) """ let var_name_anomaly = var_name_of_interest - var_name_climatology[gt=var_name_of_interest@asn] plot var_name_anomaly[gt=var_name_of_interest@asn] plot/ov var_name_of_interest plot/ov var_name_climatology[gt=var_name_of_interest@asn]

where to find ferret examples and demo-scripts? resulting plots ... 1/ shading_tave_ex.jnl 2/ plot_tseries_aave_ex.jnl 3/ plot_tave_profile_ex.jnl 4/ rem_seasonal_clim_ex.jnl where to find ferret examples and demo-scripts? /data/marble/fer_dsets/data /usr/local/ferret/examples (in ferret: go example_file.jnl)

: python ??? python faq – stackoverflow a python tutorial for climate scientist (by ARC-CCS center of excellence in climate system science) a netcdf data reading routine with python (>2.7) (readnetcdf_example.py): main file: ## this is an example for the header of the main program import scipy.io.netcdf as spn import glob from cmip5_rd import * ## read netcdf-data and process further with a1.keys() and look at the key-variables with a1['var'][:] or firstly, to get the shape: a1['var'].shape a1 = rdnetcdfdata('filename_as_string') subroutine: ## this could be subroutine "cmip5_rd.py" import scipy.io.netcdf as sp def rdnetcdfdata(filename):         """reads netcdf-data: output is a dictionary process further with keys etc """         fobj = sp.netcdf_file(filename, mode='r')         outputarray = fobj.variables         fobj.close()         return outputarray visualising and analysis tool – script-based

: python ??? read_and_write_netcdf_files: some plots ... example files in /home/UNIMELB/kdommenget/python_scripts no basemap yet read_and_write_netcdf_files: examples for a variety of programming languages including python and matlab.

What is the difference between Data, Presentation, Information and Knowledge?