Lecture XII Short lecture on Many Worlds & Decoherence

Slides:



Advertisements
Similar presentations
Quantum One: Lecture 1a Entitled So what is quantum mechanics, anyway?
Advertisements

Quantum One: Lecture 6. The Initial Value Problem for Free Particles, and the Emergence of Fourier Transforms.
Quantum Mechanics as Classical Physics Charles Sebens University of Michigan July 31, 2013.
Gerard ’t Hooft ENS Paris, October 2008 Utrecht University What is an A scientific day in memory of Philippe MEYER ( )
Everett and Evidence Wayne C. Myrvold Department of Philosophy University of Western Ontario.
Against the Empirical Viability of the DWE Approach to QM Against the Empirical Viability of the DWE Approach to QM Richard Dawid and Karim Thebault The.
Bohm versus Everett 21st-century directions in de Broglie-Bohm theory and beyond THE TOWLER INSTITUTE The Apuan Alps Centre for Physics Vallico Sotto,
Wavefunction Quantum mechanics acknowledges the wave-particle duality of matter by supposing that, rather than traveling along a definite path, a particle.
1 Recap Heisenberg uncertainty relations  The product of the uncertainty in momentum (energy) and in position (time) is at least as large as Planck’s.
The Many-Weirdnesses Interpretation of Quantum Mechanics
4. The Postulates of Quantum Mechanics 4A. Revisiting Representations
What Exists? The nature of existence. Dictionary definition (Merriam-Webster) To exist: To have real being whether material or spiritual. Being: The quality.
Quantum theory and Consciousness This is an interactive discussion. Please feel free to interrupt at any time with your questions and comments.
By Kate Hogan.  Born in Wilkes-Barre, Pennsylvania 1917  Studied at Pennsylvania State College and University of California, Berkeley  Manhattan Project.
1 Summer school “Physics and Philosophy of Time”, Saig, Quantum non-locality and the philosophy of time Michael Esfeld Université de Lausanne
In 1887,when Photoelectric Effect was first introduced by Heinrich Hertz, the experiment was not able to be explained using classical principles.
1 What does the Wave Function Describe? Ian Thompson Department of Physics, University of Surrey  Talk:
Quantum Mechanics: Interpretation and Philosophy Significant content from: “Quantum Mechanics and Experience” by David Z. Albert, Harvard University Press.
hair balls, litter boxes, decapitated birds Schroedingers Cat & Wigners Friend the parts of collapse contributions of decoherence the remaining options.
The Measurement Problem Quantum Foundations Seminar Max Planck Institute of Quantum Optics Munich, December 12 th 2011 Johannes Kofler.
IPQI – Gibbs paradox and Information Gibbs’ Paradox and Quantum Information Unnikrishnan. C. S. Gravitation Group & Fundamental Interactions Lab Tata Institute.
Gerard ’t Hooft, quant-ph/ Erice, September 6, 2006 Utrecht University 1.
Physics 2170 – Spring Some interesting aspects of quantum mechanics The last homework is due at 12:50pm.
Quantum Theory of What? What does quantum theory describe?
A1 “BASIC QUANTUM MECHANICS, AND SOME SURPRISING CONSEQUENCES” Anthony J. Leggett Department of Physics University of Illinois at Urbana-Champaign.
Phy107 Fall From Last Time… Today Superposition of wave functions Indistinguishability Electron spin: a new quantum effect The Hydrogen atom and.
SCHLC- 1 S CHRÖDINGER ’ S C AT AND H ER L ABORATORY C OUSINS A.J. Leggett Dept. of Physics, University of Illinois at Urbana-Champaign 1 st Erwin Schrödinger.
DPG 1 What is Realism in Physics? What is the Price for Maintaining It? A. J. Leggett Dept. of Physics University of Illinois at Urbana-Champaign 75 th.
So that k k E 5 = - E 2 = = x J = x J Therefore = E 5 - E 2 = x J Now so 631.
Week VIII Quantum Mechanics
PHL 356 Philosophy of Physics
Measurement and Expectation Values
Week X The Copenhagen Interpretation
Q. M. Particle Superposition of Momentum Eigenstates Partially localized Wave Packet Photon – Electron Photon wave packet description of light same.
The scope and focus of the Research
Poomipat Phusayangkul
Postulates of Quantum Mechanics
Models of the atom Atomic Theory.
Quantum theory and Consciousness
Quantum Nonsense by Matt Lowry The Skeptical Teacher
The Structure of a World Described by Quantum Mechanics
The Structure of a World Described by Quantum Mechanics A. J
Quantum mechanics from classical statistics
Quantum One.
4. The Postulates of Quantum Mechanics 4A. Revisiting Representations
Quantum One.
Daniel W. Blackmon Theory of Knowledge Coral Gables Senior High
Recap Questions What is interactionism?
Quantum One.
Quantum Physics Comes of Age I incident II transmitted reflected.
Quantum Foundations Lecture 10
Quantum One. Quantum One So what is quantum mechanics, anyway?
Quantum One.
Quantum One.
THE COSMOLOGICAL ARGUMENT.
Theory of Computation Turing Machines.
Quantum Computer Science: A Very Short Introduction (3)
Quantum Foundations Lecture 1
Quantum One.
Double Slit Experiment
“BASIC QUANTUM MECHANICS, AND SOME SURPRISING CONSEQUENCES”
Quantum Foundations Lecture 22
Quantum One.
Or Can you?.
Quantum Computer Science: A Very Short Introduction (3)
MESO/MACROSCOPIC TESTS OF QM: MOTIVATION
Quantum computation with classical bits
to the quantum measurement problem: Four types of approach to the quantum measurement problem: 1. Ignoring the problem 2. Taking the measurement.
Quantum Mechanics: Interpretation and Philosophy
Quantum One.
Presentation transcript:

Lecture XII Short lecture on Many Worlds & Decoherence Philosophy of Physics Lecture XII Short lecture on Many Worlds & Decoherence

First, a short lecture on some topics in QM that we did not have time to discuss. Then a short test. The test covers the material since the exam. It does not cover this lecture.

Other Courses PHY 491   Interpretations of Quantum Mechanics (Usually taught by Prof. John Sipe) His blurb: Review of conventional, textbook quantum mechanics. Formal measurement theory and wave function collapse; quantum states and nonseparability, violation of local causality, Bell theorems, quantum tricks, decoherence and the emergence of classical behaviour. Hidden variables, deBroglie-Bohm theory and generalizations, many-worlds interpretation and other theories of beables. Consistent histories approach of Omnes and Gell-Mann and Hartle; nature of True and Reliable statements. Prerequisite: QM (fairly advanced)

We will look at two popular approaches to the measurement problem. Many worlds Decoherence Recall what the measurement problem is: How does the (macroscopic) measuring device “collapse” the wave function of the (microscopic) entity?

Many Worlds Analogy: coin tossing A tossed coin has two possible outcomes. Suppose heads and tails both came up. How is this possible? By having the universe split in two; in one heads is the result and in the other tails. Everything that is physically possible (in QM) would be actual. All possible futures come true. The so-called “many worlds” interpretation of QM is like this.

Basic Idea Everett (1957), Wheeler, DeWitt, Deutsch, Wallace. When a quantum system is in a state of superposition, a measurement does not result in a single eigenvalue, but rather in every eigenvalue that is possible for that measurement. (This is a denial of the projection postulate. There is NO collapse of the wave function.) Eg. Suppose a photon is in a superposition of up and down in the x-direction. It is measured by an appropriately oriented Polaroid filter. The universe splits into two distinct universes with the photon having spin up in one and spin down in the other. The two universes are otherwise identical.

Schrödinger's Cat. The universe splits into two: one contains a live cat, the other a dead cat. Since we are part of the universe, duplicates of us are being created in every split.

Virtues of the Theory Takes the formalism as it is (ie, doesn't have to add “hidden variables” or somehow modify the theory). (Champions of the theory often exaggerate this virtue.) Everett said he was inspired by Spinoza. (I’m not sure why.) Minds/consciousness are not necessary. By measurement, all that is meant is, for example, that a photon is in the appropriate relation to a Polaroid filter. No micro-macro distinction. QM applies to everything.

There is no “collapse” of the wave function There is no “collapse” of the wave function. (But we can still use the projection postulate, since we are merely applying it to the universe we happen to find ourselves in.) The universe as a whole (each universe, that is) has a state function ψ. (This is not possible on any theory such as Bohr’s or Wigner’s which needs an outside observer.) Thus, popular with cosmologists.

Problems No new empirical content. (But if it solves a major conceptual problem, then this should not count too heavily against it. The same could be said, eg, about hidden variable theories.) An ontological extravaganza. To get an idea of how many universes there might be, consider a photon passing through a string of 10 filters, oriented vertically, then horizontally, then vertically, and so on.

At the first filter, the universe splits into two, with a spin up photon in one universe and a spin down in the other. The next filter then brings about another split in each of the two universes, and so on. Thus, we have 2 x 2 x...x 2 = 210 = 1024 distinct universes. Some people estimate that since the big bang there may well have been more than 10100,000,000,000 different universes created.

The probability problem. Probabilities play a central role in QM, yet the many worlds view seems to ignore them. All possible outcomes happen, so what is the difference between a pair of outcomes where one has probability 0.9 and the other 0.1. Both are realized. The different probabilities don't seem to matter. In other words, it fails to agree with or to explain the Born Rule. The basis problem. According to the many worlds theory, the universe splits into different universes corresponding to the different eigenstates of the quantum system. However, a representation in Hilbert space is somewhat arbitrary; a different eigenbasis would do as well. But it seems absurd that the universe would split in a way that depended on our arbitrary choice in representing it.

In spite of these problems, many worlds has lots of champions. Debate continues.

Decoherence Basic Idea QM applies to both the micro- and macro-world. Superpositions are, in principle, everywhere. Yet, the interference effects of superposition do no appear on a macroscopic level.

Macro-objects such as measuring devices consist of a huge number of parts and are subject to a huge number of environmental factors. This complexity leads to a collapse of the wave function very quickly. (There is a loss of coherence in the wave function because of the environment; hence “decoherence.”) Thus, Schrödinger's cat (unlike a photon) is in a state of superposition for such a small time that there are no observable physical effects. Main proponents: Zeh, Zurek, Omnès; the view is related to “consistent histories” of Griffiths, Gell-Mann & Hartle.

Details A macroscopic object (a Geiger counter, Schrödinger’s cat, etc.) is constantly subject to many influences, eg, the air, the vibrating ground, its own internal activity, and so on. It cannot be easily isolated from the environment (unlike elementary particles). If a macro-measuring device is in a state of superposition, then the different states of the superposition will interact with the environment in different ways. (They will, eg, have different interaction energies.)

Thus, the different states in the superposition will evolve at different rates and in an irregular way. Thus, there is no noticeable difference between this superposition and a “mixture.” For all practical purposes, we can call it a mixture. Roughly, in a mixture the state is definite, but we are merely ignorant of what the state is. (There are subtleties, but this will do.) If we toss a coin, but don't look at the outcome, the state is a definite heads or a definite tails, a mixture, not a superposition of both. How long does this influence of the environment take to put a macro-system into an eigenstate? Typically, something on the order of 10-45 seconds.

The virtues of this view are clear: Issues The virtues of this view are clear: QM applies to both big and small measuring does not require consciousness the von Neumann infinite regress of measuring devices does not happen. But does it really solve the measurement problem? Does our inability to distinguish for all practical purposes between the fluctuating superposition state and a mixture mean that they are the same?

Decoherence has become a new orthodoxy Decoherence has become a new orthodoxy. But it is still an open question how well it solves the measurement problem. Moreover, it has nothing to say about the other great interpretive problem of QM -- the problem of distant correlations.

Things we did not cover GRW (spontaneous collapse) Bohmian mechanics (nonlocal hidden variables) Wave function realism (reality = configuration space) QFT and String Theory (anything new philosophically?) Quantum gravity (problem of joining QM and GR) Quantum computing and quantum cryptography And lots more. If you go on in this field, there is tons of work to be done in both physics and philosophy.

Good luck on the test If you want it back, go to the Philosophy Department (170 St. George, 4th floor) and ask Eric, the person who handles the undergraduate affairs. Ready in 2 weeks Good luck with the rest of the term Happy holidays