CERN’s PS Complex LLRF consolidation:

Slides:



Advertisements
Similar presentations
26-Sep-11 1 New xTCA Developments at SLAC CERN xTCA for Physics Interest Group Sept 26, 2011 Ray Larsen SLAC National Accelerator Laboratory New xTCA Developments.
Advertisements

Test of LLRF at SPARC Marco Bellaveglia INFN – LNF Reporting for:
Collection of information about the Hardware and firmware upload within the PSB rf system A. Blas FMC WG 20/01/ Topic of the meeting: make sure that.
BI SW for LINAC4 On behalf of BE/BI/SW BI software development process Specifications List of BI Systems – Not covered: PSB ring systems Conclusions Lars.
Strategy for SPS 200 MHz LLRF upgrade (1)  Each of the four cavities (2x 5 sections, 2x 4 sections):  1-T Feedback (loop around cavity and amplifier)
The LHC: an Accelerated Overview Jonathan Walsh May 2, 2006.
Electronics for PS and LHC transformers Grzegorz Kasprowicz Supervisor: David Belohrad AB-BDI-PI Technical student report.
DLS Digital Controller Tony Dobbing Head of Power Supplies Group.
Booster Cogging Upgrades Craig Drennan, Kiyomi Seiya, Alex Waller.
Jan 30, 2008MAC meeting1 Linac4 Low Level RF P. Baudrenghien with help from J. Molendijk CERN AB-RF.
PSB DSP Based Low Level RF Operational Experience. April 2015 M.E. Angoletta, A. Blas, A. Butterworth, A. Findlay, S. Hancock, M. Jaussi, J.Molendijk,
LLRF-05 Oct.10,20051 Digital LLRF feedback control system for the J-PARC linac Shin MICHIZONO KEK, High Energy Accelerator Research Organization (JAPAN)
AB-RF-FB LLRF Developments at CERN Historic Overview, Highlights, Future Challenges Flemming Pedersen.
PSB C04 RF system Consolidation or upgrade? M. Paoluzzi – CERN BE-RF 11/23/20151.
Digital Phase Control System for SSRF LINAC C.X. Yin, D.K. Liu, L.Y. Yu SINAP, China
New PSB Beam Control Upgrade of daughter cards Alfred Blas PSB rf Working group meeting 24/03/ Generation of REV clocks 2.Synchronization with.
Fast feedback, studies and possible collaborations Alessandro Drago INFN-LNF ILCDR07 Damping Rings R&D Meeting 5-7 March 2007.
High Bandwidth damper Input from W.Hölfe Acknowledgement to all collaborators at SLAC, INFN, LBNL and CERNL Presentation of recent MD results (J.Cesaratto):
Present Uses of the Fermilab Digital Signal Receiver VXI Module Brian Chase,Paul Joireman, Philip Varghese RF Embedded Systems (LLRF) Group.
PSI Power Supply Controls MedAustron Controls Workshop 1 PR a-FMO-PSI_Power_Supply_Controls.pptx F. Moser - PSI Power Supply Controls 1.
PSB Finemet upgrade: overview, preliminary results & planning LLRF: M. E. Angoletta, A. Findlay, M. Jaussi, J. Molendijk, J. Sanchez Quesada (RF/FB, RF/CS)
Feedback and Beam Control Section (FB) Activities and Highlights 2013 Outlook presented by Wolfgang Hofle FB Section at 2013 RF Group Meeting - December.
RF system & magnetic PU ELENA review meeting CERN, November 2015 M.E. Angoletta, S. Hancock, M. Haase, M. Jaussi, A. Jones, J. Molendijk, M. Paoluzzi,
Bunch Numbering P. Baudrenghien AB/RF for the LHC/RF team.
CERN LEIR Low Level RF Maria Elena Angoletta AB/RF CERN, Geneva on behalf of the LEIR LLRF team Invited Talk 55 LLRF05: Workshop on Low Level RF CERN,
Digital LLRF: ALBA and Max-IV cases RF&Linac Section - ALBA Accelerators Division Angela Salom.
LS1 Mid-Point Status Report of the PSB Low Level RF, Transverse Feedback & High Level RF. Autumn 2013 A. Akroh, M.E. Angoletta, A. Blas, L. Arnaudon, A.
4 Channel DAC (Petri): 3 boards available for testing (version 1)-> now Transition board-> 22/12/2010 End of Hardware tests-> 28/01/2011 Attached DDC firmware.
Radio-Frequency (RF) & Schottky diagnostics WP for ELENA Maria Elena Angoletta, BE/RF on behalf of the CERN RF group First ELENA construction meeting CERN,
Digital LLRF: achievements and LS1 plans M. E. Angoletta, A. Blas, A. Butterworth, A. Findlay, M. Jaussi, P. Leinonen, T. Levens, J. Molendijk, J. Sanchez.
LIU-Ions overall status and outlook: LEIR H. Bartosik for the LIU-IONS LEIR team* with lots of material from “Beam dynamics studies on LEIR”, H. Bartosik,
FPGA Mezzanine Card standard IO-modules for the LLRF beam control system of CERN’s PS Booster and MedAustron synchrotron M. E. Angoletta, A. Blas, A.
Experience with the commissioning and operation of the new CERN Digital LLRF family M. E. Angoletta, A. Findlay, M. Jaussi, J. Molendijk, J. Sanchez Quesada,
DLLRF: existing & possible applications M. E. Angoletta, M. Jaussi, J. Molendijk, J. Sanchez-Quesada CERN, BE/RF Finemet ® Review, September 2015.
Digital Receiver and Modulator Architecture for Multi-harmonic RF Finemet Operation 03/11/2015 LLRF15: Digital Receiver and Modulator Architecture for.
CS section activities Industrial controls Luca Arnaudon David Glenat David Landre Slawomir Totos Ruben Lorenzo-Ortega Digital hardware John Molendijk.
BE-RF-FB THE LINAC4 LOW LEVEL RF 02/11/2015 LLRF15, THE LINAC4 LOW LEVEL RF2 P. Baudrenghien, J. Galindo, G. Hagmann, J. Noirjean, D. Stellfeld, D.Valuch.
Digital LLRF plans at the Australian Synchrotron P.Corlett, K.Zingre, G. LeBlanc Australian Synchrotron, 800 Blackburn Road, Clayton 3168, Victoria, Australia.
Krzysztof Czuba, ISE, Warsaw ATCA - LLRF project review, DESY, Dec , XFEL The European X-Ray Laser Project X-Ray Free-Electron Laser Master Oscillator.
Linac4-PSB 160 MeV connection readiness review Tuesday 30 August August 2016 Linac4-PSB 160 MeV connection readiness review 2.
Injector II Low Level RF & Interlock – Status
RF acceleration and transverse damper systems
Stefano Levorato INFN Trieste
Challenges of Dual Harmonic RF Systems
The ISIS Dual Harmonic Upgrade
Controls & software Andy Butterworth.
14-BIT Custom ADC Board Rev. B
the FIRESTORM project Real-Time distribution of
PS TFB Upgrade possibilities for the Hardware of the LEIR type Beam Control Information from: M.E. Angoletta, P. Baudrenghien, E, Bracke, A. Butterworth,
Status of the PS TFB Hardware Overview Machine results To be done
Injectors BLM system: PS Ring installation at EYETS
PSD Front-End-Electronics A.Ivashkin, V.Marin (INR, Moscow)
BE/RF-IS Contribution to LIU C. Rossi and M. Paoluzzi
New xTCA Developments at SLAC
The ELENA BPM System. Status and Plans.
Acknowledgments: LIU-PT members and deputies, H. Bartosik
PSB rf manipulations PSB cavities
RF and Sequences Andy Butterworth BE/RF
LLRF: M. E. Angoletta, A. Findlay, M. Jaussi, J. Molendijk, J
MTCA.4 Based Local Oscillator and Clock Generation Module for the European XFEL. Uroš Mavrič on Behalf of the MSK Group / DESY and ISE / Technical University.
Low-level RF consolidation of the CERN PS Complex machines
M. Mehler1), H. Klingbeil1), B. Zipfel2)
Challenges Implementing Complex Systems with FPGA Components
Combiner functionalities
New PSB beam control rf clock distribution
Beam dynamics requirements after LS2
DEMONSTRATION OF TRIPLE BUNCH SPLITTING IN THE CERN PS
PSB magnetic cycle 900 ms MeV to 2 GeV
Maria ELENA Angoletta for the RF team
Presentation transcript:

CERN’s PS Complex LLRF consolidation: technology, beam results & plans Maria Elena Angoletta, CERN BE/RF A. Blas, A. Findlay, J. Sanchez-Quesada, A. Butterworth, J. Molendijk, F. Pedersen, M. Schokker, P. Leinonen + previous team members RFTech workshop, PSI, 2-3 Dec 2010

Outline CPS LLRF consolidation overview LEIR LLRF PSB LLRF consolidation Conclusions References M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 1/29

Outline CPS LLRF consolidation overview LEIR LLRF PSB LLRF consolidation Conclusions References Scope & machine features Why, what & how Roadmap M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 2/29

1. CPS LLRF consolidation: scope CERN’s PS Complex (CPS) synchrotrons: LEIR, PSB, PS, AD. Possible future machine: ELENA. Request to improve injector complex & to keep it running for 25 years [1,2] → high-level + low-level RF renovation Two LLRF families @CERN ~ fixed fREV, high-frequency cavities systems: LHC, LINAC4 fREV swing, low-frequency cavities, …. → THIS TALK M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 3/29

1. CPS LLRF consolidation : machines features Often wide fREV swing (injection→extraction) Mostly low-frequency cavities (few MHz). Large synchrotron tunes (up to a few kHz). High dynamic range in cavity control voltages (sometimes > 80 dB !!!) PS machine, cycle NOMINAL (ions), batch expansion + bunch splitting Full cycle-to-cycle behaviour. Also varied parameters (ex: intensity) for same cycle. Varied RF gymnastics & cavities combinations M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 4/29

1. CPS LLRF consolidation: why Hardware obsolescence (modules from ‘70s) + variety Already-stretched modules capabilities Limited remote/cycle-to-cycle/in-cycle control capabilities Limited archiving capabilities (local knobs) New requirements: Linac4→PSB injection, PSB@2GeV. Also potential new machine: ELENA. LLRF renovation aims: To ease machine operation To reduce maintenance effort To improve overall performance + reproducibility M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 5/29

1. CPS LLRF consolidation: what Frequency program from Btrain pulses (BUP, BDOWN) Beam phase + radial loops Radial/frequency steering Synchronisation loop @extraction Bunch shaping, blowup RF gymnastics RF trains generation Amplitude/phase voltage loops Tuning loops Cavity gap control + interlocks. BEAM DYNAMICS PLAYS IMPORTANT ROLE Example: LLRF actions required by LEIR M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 6/29

1. CPS LLRF consolidation: how Digital technology ! Most frequent choice nowadays [3,4] Full/remote configurability + control + data acquisition Sophisticated/powerful data processing + signal generation Main features: Modular approach (s/w + h/w) + accessibility (no black box!) Flexibility + adaptability to different machines Hardware main blocks: VME motherboard [5,6] Daughtercards : MDDS, 4-ch DDC (ADC), 4-ch. SDDS (DAC) Tagged clock [7] for system-wide phase synchronisation . I/Q acquisition & control; typically RF freq. direct sampling. M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 7/29

1. CPS LLRF consolidation: roadmap 2003-2005: studies on PSB beams for LEIR LLRF (pilot project) [8,9]. Devised digital technology & main concepts. CNAO adapts same technology to CNAO custom h/w [10]. 2006: LEIR LLRF phase 1 commissioned [11] 2006/08: Proposals for AD consolidation [12], ELENA [13], PS tests [14]. 2008: PSB LLRF renovation project started [15]. 2009: LEIR LLRF fully commissioned & integrated [16]. Rest of this talk 2010: Started collaboration with MedAustron on LLRF + HLRF. Q4 2011: 1 ring PSB system equipped (for tests) with new h/w. >= 2013: 4 PSB rings equipped & commissioned.. > 2015: consolidation plan to be finalised. M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 8/29

Outline CPS LLRF consolidation overview LEIR LLRF PSB LLRF consolidation Conclusions References LEIR Synchrotron Overview Main h/w blocks Beam results M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 9/29

2. LEIR LLRF: synchrotron LEIR: Low-Energy Ion Ring [17] PB54+ ions (now), lighter ions (future). One cavity: Magnetic alloy-based (Finemet® FT3M) Wide-band [0.35 - 5 MHz], up to 4 kV, non-tunable [18]. LEIR machine layout LEIR main parameters for Pb54+ M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 10/29

2. LEIR LLRF: overview Important “per se” & as LLRF consolidation pilot project. Happy LEIR LLRF users First all-digital LLRF for CERN synchrotron Big RF group investment (manpower) Success! Reliable, powerful, flexible (LEIR operation runs 2006, 2007, 2009, 2010). Frequency program Radial loop (h = 1 & h = 2) Phase loop (h = 1 & h = 2) Synchro loop (h = 1 & h = 2) RF trains generation Double harmonic operation Cavity phase & voltage loops Cavity gap operation Acceleration + bunch-shaping (dual-harmonic operation on same cavity ). No black box: fully configurable & observable system. Features M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 11/29

2. LEIR LLRF: overview (layout) Keys: MDDS – Master Direct Digital Synthesiser (DDS); SDDS - Slave DDS; DDC – Digital Down Converter; CCI – Cavity Control Interface; TCF – Tagged Clock Fanout; TPU –Transversal Pick-Up; CTRV – Timing Receiver Module; PPC – Power PC; Bup, Bdown – measured magnetic field. Blue modules: produced by and under the responsibility of RF group. M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 12/29

2. LEIR LLRF: overview (operation) Working Set OASIS (data visualisation) Function editor Tomoscope RF Synoptic CONTROL Cavity control LLRF LOCAL CR Next slides PLC RF trains to: transverse damper, tomoscope, tune meas 2x radial PUs (Σ+Δ), Phase PU, BTrain, extraction synchro ref. HLRF RING M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 13/29

2. LEIR LLRF: main h/w blocks DSP-carrier [3,4] : Function: beam ctrl, carries daughtercards, s/w int’face, diagnostics... 6U VME64x, ADSP21160M DSP, 8 MB memory, FPGAs (glue-logic & light processing). Inter-DSP data exchange via linkports™. Master Direct Digital Synthesiser: Function: tagged clock [7] (single/double) generation. AD9858 1 GHz DDS + Stratix. LVDS + Firewire connector & cables. In-cycle change of MDDS clock h to cope with fREV swing. MDDS daughtercard – schematic view. M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 14/29

2. LEIR LLRF: main h/w blocks (cont’d) DDC daughtercard – schematic view. Function: tunable RF receiver. CIC filter under DSP control. ADC (AD9245, 14 bits, 80 MHz) + Stratix . SRAM (256 k x 16 bits). Digital Down Converter (4 channels) Digital I/O for cavity interfacing. Slave Direct Digital Synthesiser (4 channels): Function: analogue voltages generation (cavity voltages + RF trains). DAC (AD9754, 14 bits, 125 MHz) + Stratix. SRAM (256 k x 16 bits). Switched DAC Iref for high output dynamic range. SDDS daughtercard – schematic view. M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 15/29

2. LEIR LLRF: beam results (synchro loop) Aim: to synchronise in frequency+phase the beam to external ref. Different synchro algorithms available & PPM-selectable. Frequency steering Extraction Synchro phase loop closed Frequency steering (7 ms) Synchro phase loop Frequency steering started Extraction Synchro phase loop closed EARLY beam (Nov. 2007) M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 16/29

2. LEIR LLRF: beam results (cavity loop) Aim: I/Q loop on cavity voltage. Independent h = 1 & h = 2 loops. Open loop cavity voltage response: Pink = programmed voltage Blue = measured voltage Cavity servoloop response to 1.5 kV step. M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 17/29

Outline CPS LLRF consolidation overview LEIR LLRF PSB LLRF consolidation Conclusions References Synchrotron Renovation layout + technology Hardware Initial beam results M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 18/29

3. PSB LLRF: synchrotron 4 rings superimposed, protons. One independent LLRF /ring. Three HLRF /ring. Ferrite-loaded, tunable, low-frequency cavities. Include voltage & tuning loops. Extremely varied cycle-to-cycle requests: intensity (109 to >1013 /ring), emittances, RF gymnastics … M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 19/29

3. PSB LLRF: consolidation LLRF must satisfy present + new requirements HLRF consolidation under study → LLRF design must be modular. NB: LLRF tests/commissioning can be done in // with normal operation. Option 1: ferrite cavities → tuning/voltage loops to LLRF (Phase 2). Option 2: C02+C04 substituted by one Finemet® cavity (FT3L) → LLRF to implement voltage loops + cavity interfacing. Layout + some modules shown in next slides H/w + s/w development to improve capabilities & performances. Evolution of LEIR system. Ambitious beam tests campaign to validate capabilities & approaches 2008, 2010, 2011: with LEIR-type hardware. 2011 onwards: with new hardware. Roadmap Some beam results shown in next slides M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 20/29

3. PSB LLRF: consolidation (layout) Keys: MDDS – Master Direct Digital Synthesiser (DDS); DAC – RF gen. daughtercard; ADC – Acquisition daughtercard; TCF – Tagged Clock Fanout; TPU –Transversal Pick-Up; HLRF – High-Level RF; CTRV – Timing Receiver Module; MEN A20 – Master VME board; VXS Switch – Switch board for VXS crate; Bup,Bdown – measured B field. Blue modules: produced by and under the responsibility of RF group. M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 21/29

3. PSB LLRF: consolidation (technology) Same blocks/granularity as LEIR but more powerful technology. Backplane: VME Switched Serial (VXS), Standard VITA 41.0 Fully backwards-compatible with VME Switch module for inter-boards high-speed comms + data exchange ( up to 3.125 Gbps). Motherboard: (6U) Powerful data processing: 2 x Virtex5 FPGAs + SharcDSP 400MHz FPGA_FMC: FMC processing (CIC filters, RF generation, cavity interface…) FPGA_MAIN + DSP: comms, beam control processing & diagnostics. RF clock + tag distributed as separate lines to each motherboard. FPGA Mezzanine Standard (FMC) I/O daughtercards Only analogue front-end (no on-board data processing) High pin count connector (400 pins) M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 22/29

3. PSB LLRF: consolidation h/w (FMC carrier) FPGA for FMC data processing SRAM clocked by RF clock Inter-board communication via VXS bus (up to 3.125 Gbps) J. Molendijk main engineer Communication with RTM board (timings & digital outputs) FMC site FPGA + DSP for communication, beam control processing & diagnostics M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 23/29

3. PSB LLRF: consolidation h/w (ADC FMC) High pin count FMC connector 2 x AD9268 ADCs: double ADC chipset, 16bit, 125MSPS. Offset compensation scheme + temperature compensated offset control. Front panel essential also for thermal dissipation Three-colors front-panel leds under FPGA_FMC control. Picture (and work!) courtesy of J. Sanchez-Quesada M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 24/29

3. PSB LLRF: consolidation h/w (DAC FMC) 2 x AD9747: : double DAC chipset, 16bit, 250 MSPS Programmable digital + analogue gains for dynamic range shift. Unique PCB identification by silicon ID chip. On-board EEPROM to store h/w-specific info (FMC type, VN, operating voltage…) Picture (and work!) courtesy of P. Leinonen M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 25/29

I know what you’re thinking… WOW!!!! M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 26/29

3. PSB LLRF: initial results (C04 phase servoing) Aim: improved bunching factor. How: C04 phase controlled by feedback w.r.t. C02 or beam phases (user-selectable). Bunches after injection (276 to 388 ctime): Square shape No “pedestal” M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 27/29

3. PSB LLRF: initial results (bunch splitting) Aim: obtain beam with specific parameters @ extraction. Equal-height final bunches (756 to 765 ctime) Nice bunch splitting (759 to 769 ctime) M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 28/29

4. Conclusions IT’S A DEMANDING & EXCITING TIME !!! RF group has chosen to consolidate PS Complex LLRF systems To reduce maintenance effort To improve machine operation → ad-hoc LLRF family started for this LEIR LLRF: successful pilot project Reliable, powerful & flexible Essential experience for PS Complex renovation PSB LLRF consolidation: project started in 2008 & underway Evolution of LEIR LLRF: h/w + s/ developments to improve performances Ambitious beam tests campaign to validate capabilities & approaches Precise consolidation plan for other machines to be finalised IT’S A DEMANDING & EXCITING TIME !!! M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 29/29

5. References [1] [2] [3] [4] [5] [6] [7] [8] [9] S. Baird, “Keeping The Present LHC Injector Complex Running for 25 Years”, Chamonix 2010. G. Arduini et al., “Possible Improvements to the Existing Pre-Injector Complex in the Framework of Continued Consolidation”, Chamonix 2010. M.E. Angoletta, “Digital Low-Level RF”, EPAC ’06, invited talk WEXPA03. M.E. Angoletta, “Digital Signal Processing in beam Instrumentation: Latest Trends and Typical Applications”, DIPAC ’03, invited talk IT07. M. E. Angoletta, “The DSP-Carrier Board Used By The LEIR Low-Level RF System: User’s Manual”, AB-Note-2007-030-RF. M. E. Angoletta, “The LEIR LLRF DSP-Carrier Board: Performance, CPS Renovation Plan And Recommendations”, AB-Note-2007-031-RF. R. Garoby, “Multi-Harmonic RF Source for the Anti-Proton Production Beam of the AD”, PS/RF/Note 97-10. M. E. Angoletta, J. H. DeLong (BNL), A. Findlay, F. Pedersen, “Feasibility Tests of a New All-Digital Beam Control Scheme for LEIR”, AB-Note-2004-004-RF. M. E. Angoletta, J. Bento, A. Blas, J. H. Delong (BNL), A. Findlay, P. Matuszkiewicz, F. Pedersen, A. Salom-Sarasqueta, “Beam Tests of a New Digital Beam Control System for the CERN LEIR Accelerator”, PAC’05, Knoxville, USA. [2] [3] [4] [5] [6] [7] [8] [9] M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 1/29

5. References (cont’d) [10] [11] [12] [13] [14] [15] [16] [17] M. E. Angoletta, A. Findlay (CERN), O. Bourrion, R. Foglio, D. Tourres, C. Vescovi (LPSC Genoble), L. Falbo, S. Hunt (CNAO), D. DeMartinis (INFN), “CERN PSB Beam Tests of CNAO Synchrotron’s Digital LLRF”, EPAC ‘08. M. E. Angoletta, A. Findlay, “First Experience With The New LEIR Digital Beam Control System”, AB-Note-2006-003-RF. T. Eriksson, “AD Consolidation for Operation Beyond 2010”, CERN-AB-2008-068 OP. T. Eriksson et al. , “ELENA – a Preliminary Cost and Feasibility Study”, CERN-AB- 2007-079 OP. M.E. Angoletta, S. Hancock, F. Pedersen, M. Schokker, J.-L. Vallet, “Proposal for a Cavity Phase Observation System in the PS Machine”, AB-Note-2006-050-RF. M. E. Angoletta, A. Blas, A. Butterworth, A. Findlay, P. M. Leinonen, J. C. Molendijk, F. Pedersen, J. Sanchez-Quesada, M. Schokker, “CERN’s PS Booster LLRF Renovation: Plans and Initial Beam Tests”, IPAC 2010. M. E. Angoletta, J. Bento, A. Blas, E. Bracke, A. Butterworth, F. Dubouchet, A. Findlay, F. Pedersen, J. Sanchez-Quesada, “CERN’s LEIR Digital LLRF: System Overview and Operational Experience”, IPAC 2010. M. Chanel et al., “LEIR: Towards the Nominal Lead Ion Beam”, APAC2007, RRCAT, Indore, India. [11] [12] [13] [14] [15] [16] [17] M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 1/29

5. References (cont’d) [18] R. Garoby, M. Haase, P. Maesen, M. Paoluzzi, C. Rossi, C. Ohmori (KEK), “The LEIR RF System”, PAC05, Knoxville, USA, May 2005. M. E. Angoletta “CERN's PS Complex LLRF renovation: technology, beam results and plans” 1/29