Stat 35b: Introduction to Probability with Applications to Poker

Slides:



Advertisements
Similar presentations
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Zelda, continued. 2.Difficult homework 3 problem. 3.WSOP 2013 hand.
Advertisements

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Savage/Tyler, Kaplan/Gazes 2.P(flop a full house) 3.Bernoulli random.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterms. 2.Hellmuth/Gold. 3.Poisson. 4.Continuous distributions.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
Stat 13, Thu 5/3/ Correction on normal notation. 2. Normal percentiles. 3. Normal probability plots. 4. Bernoulli and Binomial random variables.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw4. 2.Review list 3.Tournament 4.Sample problems * Final.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Thur 3/8/12: 0.HAND IN HW3 again! 1.E(X+Y) example corrected. 2.Random.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 0. Collect hw2, return hw1, give out hw3. 1.Project A competition.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterm. 2.Review of Bernoulli and binomial random variables. 3.Geometric.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.E(cards til 2 nd king). 2.Negative binomial. 3.Rainbow flops examples,
Expected values and variances. Formula For a discrete random variable X and pmf p(X): Expected value: Variance: Alternate formula for variance:  Var(x)=E(X^2)-[E(X)]^2.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Collect Hw4. 2.Review list. 3.Answers to hw4. 4.Project B tournament.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw3. 2.Review of midterm. 3.Project B functions and example.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tue 3/13/12: 1.Collect Hw WSOP main event. 3.Review list.
Outline for the day: 1.Discuss handout / get new handout. 2.Teams 3.Example projects 4.Expected value 5.Pot odds calculations 6.Hansen / Negreanu 7.P(4.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Deal-making and expected value 2.Odds ratios, revisited 3.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Poker Code competition: all-in or fold.   u 
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Review list 2.Bayes’ Rule example 3.CLT example 4.Other examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tues 2/28/12: 1.Midterms back. 2.Review of midterm. 3.Poisson distribution,
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tue 3/13/12: 1.Fred Savage hand. 2.Random walks, continued, for 7.14.
Expected value (µ) = ∑ y P(y) Sample mean (X) = ∑X i / n Sample standard deviation = √[∑(X i - X) 2 / (n-1)] iid: independent and identically distributed.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.E(X+Y) = E(X) + E(Y) examples. 2.CLT examples. 3.Lucky poker. 4.Farha.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratios revisited. 2.Gold/Hellmuth. 3.Deal making. 4.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw1! Get hw2. 2.Combos, permutations, and A  vs 2  after.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Tournaments 2.Review list 3.Random walk and other examples 4.Evaluations.
1)Hand in HW. 2)No class Tuesday (Veteran’s Day) 3)Midterm Thursday (1 page, double-sided, of notes allowed) 4)Review List 5)Review of Discrete variables.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Uniform, normal, and exponential. 2.Exponential example. 3.Uniform.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.HW4 notes. 2.Law of Large Numbers (LLN). 3.Central Limit Theorem.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.PDFs and CDFs, for Random walks, ch 7.6. Reflection principle,
(Day 14 was review. Day 15 was the midterm.) Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Return and review.
Outline: 1) Odds ratios, continued. 2) Expected value revisited, Harrington’s strategy 3) Pot odds 4) Examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Combos, permutations, and A  vs 2  after first ace 2.Conditional.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value. 2.Heads up with AA. 3.Heads up with Gus vs.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review List 2.Review of Discrete variables 3.Nguyen / Szenkuti.
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Probabilities What is the probability that among 23 people (this class) there will be a shared birthday?
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Honors Stats 4 Day 10 Chapter 16.
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Week 8 Chapter 14. Random Variables.
Stat 35b: Introduction to Probability with Applications to Poker
Probability 14.1 Experimental Probability 14.2 Principles of Counting
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Chapter 6: Random Variables
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Ch. 6. Binomial Theory.
Further Stats 1 Chapter 5 :: Central Limit Theorem
Expected values and variances
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Geometric Poisson Negative Binomial Gamma
IE 360: Design and Control of Industrial Systems I
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Presentation transcript:

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: Hw3 and midterm. Unbeatable strategy. Geometric random variables. Negative binomial. E(X+Y). Harman, Negreanu and running it twice.   u    u 

hw3 and midterm. hw3 is due Thur Mar 1, 12:30pm. 4.7, 4.8, 4.12, 4.16, 5.6, 6.2. The midterm is Thu Feb 23, in class. It will be on chapters 1-5. I will be lecturing on some stuff in chapter 6 before then, but the midterm will only cover ch 1-5. It will be mostly multiple choice, plus a few short answer questions. You can use the book, plus just one page (double sided) of 8.5 x 11 paper with notes on it. Keep that page of notes after the test.   u    u 

2) “Unbeatable Texas Holdem Strategy”. http://www.freepokerstrategy.com : all in with AK-AT or any pair P(getting such a hand) = 4 x [16/1326] + 13 x [6/1326] = 4 x 1.2% + 13 x 0.45% = 10.7%. (coded in day8.ppt) (dabest and jamesbond are in day9.ppt.) Say you’re dealt 100 hands. Pay ~11 blinds = $55. Expect 10.7 (~ 11) such good hands. Say you’re called by 88-AA, and AK, for $100 on avg. P(player 1 has one of these) = 7 x 0.45% + 1.2% = 4.4%. P(of 8 opponents, someone has one of these) ~ 1 - (95.6%)8 = 30%. So, you win pre-flop 70% of the time. (Say $10 on avg.) = 11 x 70% x $10 = $77 profit. Other 30%, you’re on avg about a 65-35 underdog, so you win 11 x 30% x 35% x $100 = $115.50 lose 11 x 30% x 65% x $100 = $214.50. Total: exp. to win $77 + $115.50 - $55 - $214.50 = -$77/ 100 hands.

3. Geometric Random Variables, ch 5.3. Suppose now X = # of trials until the first occurrence. (Again, each trial is independent, and each time the probability of an occurrence is p.) Then X = Geometric (p). e.g. the number of hands til you get your next pocket pair. [Including the hand where you get the pocket pair. If you get it right away, then X = 1.] Now X could be 1, 2, 3, …, up to ∞. pmf: P(X = k) = p1 qk - 1. e.g. say k=5: P(X = 5) = p1 q 4. Why? Must be 0 0 0 0 1. Prob. = q * q * q * q * p. If X is Geometric (p), then µ = 1/p, and s = (√q) ÷ p. e.g. Suppose X = the number of hands til your next pocket pair. P(X = 12)? E(X)? s? X = Geometric (5.88%). P(X = 12) = p1 q11 = 0.0588 * 0.9412 ^ 11 = 3.02%. E(X) = 1/p = 17.0. s = sqrt(0.9412) / 0.0588 = 16.5. So, you’d typically expect it to take 17 hands til your next pair, +/- around 16.5 hands.

4. Negative Binomial Random Variables, ch 5.4. Recall: if each trial is independent, and each time the probability of an occurrence is p, and X = # of trials until the first occurrence, then: X is Geometric (p), P(X = k) = p1 qk - 1, µ = 1/p, s = (√q) ÷ p. Suppose now X = # of trials until the rth occurrence. Then X = negative binomial (r,p). e.g. the number of hands you have to play til you’ve gotten r=3 pocket pairs. Now X could be 3, 4, 5, …, up to ∞. pmf: P(X = k) = choose(k-1, r-1) pr qk - r, for k = r, r+1, …. e.g. say r=3 & k=7: P(X = 7) = choose(6,2) p3 q4. Why? Out of the first 6 hands, there must be exactly r-1 = 2 pairs. Then pair on 7th. P(exactly 2 pairs on first 6 hands) = choose(6,2) p2 q4. P(pair on 7th) = p. If X is negative binomial (r,p), then µ = r/p, and s = (√rq) ÷ p. e.g. Suppose X = the number of hands til your 12th pocket pair. P(X = 100)? E(X)? s? X = Geometric (12, 5.88%). P(X = 100) = choose(99,11) p12 q88 = choose(99,11) * 0.0588 ^ 12 * 0.9412 ^ 88 = 0.104%. E(X) = r/p = 12/0.0588 = 204.1. s = sqrt(12*0.9412) / 0.0588 = 57.2. So, you’d typically expect it to take 204.1 hands til your 12th pair, +/- around 57.2 hands.

5) E(X+Y) = E(X) + E(Y). Whether X & Y are independent or not 5) E(X+Y) = E(X) + E(Y). Whether X & Y are independent or not! pp126-127. Similarly, E(X + Y + Z + …) = E(X) + E(Y) + E(Z) + … And, if X & Y are independent, then V(X+Y) = V(X) + V(Y). so SD(X+Y) = √[SD(X)^2 + SD(Y)^2]. Example 1: Play 10 hands. X = your total number of pocket aces. What is E(X)? X is binomial (n,p) where n=10 and p = 0.00452, so E(X) = np = 0.0452. Alternatively, X = # of pocket aces on hand 1 + # of pocket aces on hand 2 + … So, E(X) = Expected # of AA on hand1 + Expected # of AA on hand2 + … Each term on the right = 1 * 0.00452 + 0 * 0.99548 = 0.00452. So E(X) = 0.00452 + 0.00452 + … + 0.00452 = 0.0452. Example 2: Play 1 hand, against 9 opponents. X = total # of pocket aces at the table. Now what is E(X)? Note: not independent! If you have AA, then it’s unlikely anyone else does too. Nevertheless, Let X1 = 1 if player #1 has AA, and 0 otherwise. X2 = 1 if player #2 has AA, and 0 otherwise. etc. Then X = X1 + X2 + … + X10. So E(X) = E(X1) + E(X2) + … + E(X10) = 0.00452 + 0.00452 + … + 0.00452 = 0.0452. (Harman / Negreanu)

6) Harman / Negreanu, and running it twice. Harman has 10 7 . Negreanu has K Q . The flop is 10u 7 Ku . Harman’s all-in. $156,100 pot. P(Negreanu wins) = 28.69%. P(Harman wins) = 71.31%. Let X = amount Harman has after the hand. If they run it once, E(X) = $0 x 29% + $156,100 x 71.31% = $111,314.90. If they run it twice, what is E(X)? There’s some probability p1 that Harman wins both times ==> X = $156,100. There’s some probability p2 that they each win one ==> X = $78,050. There’s some probability p3 that Negreanu wins both ==> X = $0. E(X) = $156,100 x p1 + $78,050 x p2 + $0 x p3. If the different runs were independent, then p1 = P(Harman wins 1st run & 2nd run) would = P(Harman wins 1st run) x P(Harman wins 2nd run) = 71.31% x 71.31% ~ 50.85%. But, they’re not quite independent! Very hard to compute p1 and p2. However, you don’t need p1 and p2 ! X = the amount Harman gets from the 1st run + amount she gets from 2nd run, so E(X) = E(amount Harman gets from 1st run) + E(amount she gets from 2nd run) = $78,050 x P(Harman wins 1st run) + $0 x P(Harman loses first run) + $78,050 x P(Harman wins 2nd run) + $0 x P(Harman loses 2nd run) = $78,050 x 71.31% + $0 x 28.69% + $78,050 x 71.31% + $0 x 28.69% = $111,314.90.

HAND RECAP: Harman 10 7 . Negreanu K Q . Flop 10u 7 Ku . Harman’s all-in. $156,100 pot. P(Negreanu wins) = 28.69%.P(Harman wins) = 71.31%. --------------------------------------------------------------------------- The standard deviation changes a lot! Say they run it once. (see p127.) V(X) = E(X2) - µ2. µ = $111,314.9, so µ2 ~ $12.3 billion. E(X2) = ($156,1002)(71.31%) + (02)(28.69%) = $17.3 billion. So V(X) = $17.3 billion - $12.3 billion = $5.09 billion. The standard deviation s = sqrt($5.09 billion) ~ $71,400. So if they run it once, Harman expects to get back about $111,314.9 +/- $71,400. If they run it twice? Hard to compute, but approximately, if each run were independent, then V(X1+X2) = V(X1) + V(X2), so if X1 = amount she gets back on 1st run, and X2 = amount she gets from 2nd run, then V(X1+X2) ~ V(X1) + V(X2) ~ $1.25 billion + $1.25 billion = $2.5 billion, The standard deviation s = sqrt($2.5 billion) ~ $50,000. So if they run it twice, Harman expects to get back about $111,314.9 +/- $50,000.