Near-Infrared Spectroscopy of Small Protonated Water Clusters

Slides:



Advertisements
Similar presentations
Infrared spectroscopy of metal ion-water complexes
Advertisements

Hydrogen Bonding in Methanated Li + (H 2 O) 2-4 Clusters Oscar Rodriguez Jr. and James M. Lisy University of Illinois at Urbana-Champaign.
17.1 Mass Spectrometry Learning Objectives:
Ryunosuke Shishido, Asuka Fujii Department of Chemistry, Graduate School of Science, Tohoku University, Japan Jer-Lai Kuo Institute of Atomic and Molecular.
Infrared Spectroscopy of Doubly-Charged Metal-Water Complexes
Structural Isomerization of the Gas Phase 2-Norbornyl Cation Revealed with Infrared Spectroscopy and Computational Chemistry Dept. of Chemistry University.
INFRARED SPECTROSCOPIC STUDY ON FERMI RESONANCE OF THE EXCESS PROTON VIBRATION IN BINARY CLUSTERS Ryunosuke SHISHIDO, Asuka FUJII Department of Chemistry,
Structure Determination of Silicon Clusters in the Gas Phase A Vibrational Spectroscopy and DFT Investigation Jonathan T. Lyon, Philipp Gruene, Gerard.
Biswajit Bandyopadhyay, Tim Cheng and Michael A. Duncan Department of Chemistry, University of Georgia, Athens, GA,
Probing isomer interconversion in anionic water clusters using an Ar-mediated pump- probe approach T. L. Guasco, G. H. Gardenier, L. R. McCunn, B. M. Elliott,
Infrared Photodissociation Spectroscopy of Silicon Carbonyl Cations
Isomer Selection in NO 2 ˉ · H 2 O · Ar Rachael Relph Rob Roscioli, Ben Elliott, Joe Bopp, Tim Guasco, George Gardenier Mark Johnson Johnson Lab Yale University.
Introduction Methods Conclusions Acknowledgement The geometries, energies, and harmonic vibrational frequencies of complexes studied were calculated using.
Infrared Photodissociation Spectroscopy of Aluminum Benzene Cation Complexes Nicki Reishus, Biswajit Bandyopadhyay and Michael A. Duncan Department of.
Infrared Spectroscopic Investigation of Magic Number Hydrated Metal Ion Clusters Jordan Beck, Jim Lisy June 22,2009 OSU International Symposium on Molecular.
Infrared spectroscopy of the hydrated sulfate dianion Columbus2006.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Tunable Infrared Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy of Thin Films Timothy Cheng, Michael Duncan Department of Chemistry, University.
Microscopic Compatibility between Methanol and Water in Hydrogen Bond Network Development in Protonated Clusters Asuka Fujii, Ken-ichiro Suhara, Kenta.
Department of Chemistry, University of Georgia, Athens, GA National Science Foundation Infrared.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Multiple Photon Absorption in Hydrated Cesium Ion Clusters Jordan Beck, Jim Lisy June 17,2008 OSU International Symposium on Molecular Spectroscopy.
Kristin Breen, Helen Gerardi, George Gardenier, Timothy Guasco,
Infrared Spectroscopy of H + (C 2 H 2 ) n Ar and H + (C 2 H 4 ) n Ar (n=1,2) Gary E. Douberly, Allen M. Ricks, Brian W. Ticknor, and Michael A. Duncan.
Infrared Spectroscopy & Structures of Mass-Selected Rhodium Carbonyl & Rhodium Dinitrogen Cations Heather L. Abbott, 1 Antonio D. Brathwaite 2 and Michael.
Infrared Photodissociation Spectroscopy of TM + (N 2 ) n (TM=V,Nb) Clusters E. D. Pillai, T. D. Jaeger, M. A. Duncan Department of Chemistry, University.
Spectroscopy of Multiply Charged Metal Ions: IR Study of Mn 2+ (18-crown-6 ether)(MeOH) 1-3 Jason D. Rodriguez and James M. Lisy Department of Chemistry,
P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN
The University of Illinois-Urbana Champaign
Vibrational Predissociation Spectra in the Shared Proton Region of Protonated Formic Acid Wires: Characterizing Proton Motion in Linear H-Bonded Networks.
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.
IR spectra of Methanol Clusters (CH3OH)n Studied by IR Depletion and VUV Ionization Technique with TOF Mass Spectrometer Department of Applied Chemistry.
Study of the CH 2 I + O 2 Reaction with a Step-scan Fourier-transform Infrared Absorption Spectrometer: Spectra of the Criegee Intermediate CH 2 OO and.
Infrared Resonance Enhanced Photodissociation (IR- REPD) Spectroscopy used to determine solvation and structure of Ni + (C 6 H 6 ) n and Ni + (C 6 H 6.
Infrared Spectroscopy of Protonated Benzene Clusters Biswajit Bandyopadhyay, Timothy Cheng and Michael A. Duncan University.
Infrared Photodissociation Spectroscopy of Aluminum Benzene Cation Complexes Nicki Reishus, Biswajit Bandyopadhyay and Michael A. Duncan Department of.
Infrared Resonance Enhanced Photodissociation of Au + (CO) n Complexes in the Gas Phase Joe Velasquez, III, E. Dinesh Pillai and Michael A. Duncan Department.
INFRARED SPECTROSCOPY OF (CH 3 ) 3 N-H + -(H 2 O) n (n = 1-22) Ryunosuke Shishido, Asuka Fujii Department of Chemistry, Graduate School of Science, Tohoku.
Gas Phase Infrared Spectroscopy of Protonated Species Department of Chemistry University of Georgia Athens Georgia,
Protonated Water Clusters Revisited: Investigating the Elusive Excess Proton Vibrational Signature using Cryogenic Ion Spectroscopy Joseph Fournier, Christopher.
Infrared Spectra of Anionic Coinage Metal-Water Complexes J. Mathias Weber JILA and Department of Chemistry and Biochemistry University of Colorado at.
Three-Dimensional Water Networks Solvating an Excess Positive Charge: New Insights into the Molecular Physics of Ion Hydration Conrad T. Wolke Johnson.
How Do Networks of Water Accommodate an Excess Electron?, Joseph R. Roscioli, and Mark A. Johnson Nathan I. Hammer, Joseph R. Roscioli, and Mark A. Johnson.
Water network-mediated, electron induced proton transfer in anionic [C 5 H 5 N·(H 2 O) n ]¯ clusters: Size-dependent formation of the pyridinium radical.
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
Vibrational Predissociation Spectroscopy of Homoleptic Heptacoordinate Metal Carbonyl Complexes Allen M. Ricks and Michael A. Duncan Department of Chemistry.
Temperature Dependence of Rb + (H 2 O) n and Rb + (H 2 O) n Ar (n=3-5) Cluster Ions Amy L. Nicely OSU International Symposium on Molecular Spectroscopy.
Infrared Spectroscopy of Protonated Methanol-Water Clusters -Effects of Heteromolecules in Hydrogen Bond Network- Ken-ichiro Suhara, Asuka Fujii and Naohiko.
Erin M. Duffy, Brett M. Marsh, Jonathan M. Voss, Etienne Garand University of Wisconsin, Madison International Symposium on Molecular Spectroscopy June.
Analysis of Hydrogen Bonding in the OH Stretch Region of Protonated Water Clusters Laura C. Dzugan and Anne B. McCoy June 26, 2015.
Infrared Spectroscopy of Protonated Acetylacetone and Mixed Acetylacetone/Water Clusters Daniel T. Mauney, David C. McDonald II, Jonathon A. Maner and.
Gas Phase Infrared Spectroscopy of Mass Selected Carbocations Department of Chemistry University of Georgia Athens Georgia, 30602
Probing the vibrational spectroscopy of the deprotonated thymine radical by photodetachment and state-selective autodetachment photoelectron spectroscopy.
Charge Oscillation in C-O Stretching Vibrations: A Comparison of CO2 Anion and Carboxylate Functional Groups Michael C. Thompson, J. Mathias Weber 72nd.
Helen K. Gerardi1, Andrew F. DeBlase1, Xiaoge Su2, Kenneth D
Andrew J. Wilson and Prashant K. Jain Department of Chemistry
Temperature Effects in Hydrated Alkali Metal Ions
Jacob T. Stewart and Bradley M
Vibrational Signatures of Solvent-Mediated Core Ion Deformation in Size-Selected [MgSO4Mg(H2O)n=4-11]2+ Clusters Patrick Kelleher, Joseph DePalma, Christopher.
Spectroscopy in Traps: ISMS 2016
Infrared Spectroscopy of Gas Phase Protonated CO2 Clusters
Amy L. Nicely and James M. Lisy
E. D. Pillai, J. Velasquez, P.D. Carnegie, M. A. Duncan
Vibrational Spectroscopy and Theory of Cu+(CH4)n and Ag+(CH4)n (n=1-6)
Allen M. Ricks and Michael A. Duncan Department of Chemistry
INFRARED SPECTRA OF ANIONIC COBALT-CARBON DIOXIDE CLUSTERS
T. L. Guasco, B. M. Elliott, M. Z. Kamrath and M. A. Johnson
Vibrational Predissociation Spectroscopy of Uranium Complexes
Stepwise Internal Energy Control for Protonated Methanol Clusters
71st ISMS UV Photodissociation Spectroscopy of Temperature-Controlled Hydrated Phenol Cluster Cation Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki.
Presentation transcript:

Near-Infrared Spectroscopy of Small Protonated Water Clusters International Symposium on Molecular Spectroscopy J. Philipp Wagner, David C. McDonald II, Anne B. McCoy and Michael A. Duncan Jun 20, 2017 Department of Chemistry University of Georgia Athens, Georgia 30602

Accomodation of the solvated proton Small protonated water clusters serve as model systems to understand structure of dilute acids in a bottom up approach Mid-IR spectroscopy and computational chemistry used to unveil structures Eigen and Zundel as two main structural motifs Eigen Zundel C3 2650 cm−1 C2 1000 cm−1 M. Eigen, Angew. Chem. Int. Ed. Engl. 1964, 3, 1-19. G. Zundel, H. Metzger, Z. Phys. Chem. 1968, 58, 225-245. Reviews: H. C. Chang, C. C. Wu, J. L. Kuo, Int. Rev. Phys. Chem. 2005, 24, 553-578; N. Agmon, H. J. Bakker, R. K. Campen, R. H. Henchman, P. Pohl, S. Roke, M. Thämer, A. Hassanali, Chem. Rev. 2016, 116, 7642-7672; J. A. Fournier, C. T. Wolke, M. A. Johnson, T. T. Odbadrakh, K. D. Jordan, S. M. Kathmann, S. S. Xantheas, J. Phys. Chem. A 2015, 119, 9425-9440. 1

A AD AAD νs ∼ 3650 cm−1 νas ∼ 3740 cm−1 ∼3715 cm−1 ∼3690 cm−1 Free OH stretches and their characteristic IR absorptions A AD AAD νs ∼ 3650 cm−1 νas ∼ 3740 cm−1 ∼3715 cm−1 ∼3690 cm−1 Diminishes with cluster size Vanishes at H+(H2O)11 Dominant for 8, 9 and 10 water molecules Appears at H+(H2O)7 Dominant for H+(H2O)11 and bigger clusters Review: H. C. Chang, C. C. Wu, J. L. Kuo, Int. Rev. Phys. Chem. 2005, 24, 553-578. J. M. Headrick, E. G. Diken, R. S. Walters, N. I. Hammer, R. A. Christie, J. Cui, E. M. Myshakin, M. A. Duncan, M. A. Johnson, K. D. Jordan, Science 2005, 308, 1765-1769. 2

Global minimum energy structures Both Eigen and Zundel motifs Smaller clusters open Ring isomers from 7 onwards Cage structures at 10 water molecules Magic number 21 is highly symmetric Figure: J. A. Fournier, C. T. Wolke, M. A. Johnson, T. T. Odbadrakh, K. D. Jordan, S. M. Kathmann, S. S. Xantheas, J. Phys. Chem. A 2015, 119, 9425-9440. J. M. Headrick, E. G. Diken, R. S. Walters, N. I. Hammer, R. A. Christie, J. Cui, E. M. Myshakin, M. A. Duncan, M. A. Johnson, K. D. Jordan, Science 2005, 308, 1765-1769; S. Karthikeyan, K. S. Kim, J. Phys. Chem. A 2009, 113, 9237-9242; S. S. Xantheas, Can. J. Chem. Eng. 2012, 90, 843-851. 3

Magic number cluster H+(H2O)21 Fenn: unusually large 21mer in MS Analogy to methane clathrate Single AAD stretch in free OH region H3O+ unit in surface, H2O in the cage J. Q. Searcy, J. B. Fenn, J. Chem. Phys. 1974, 61, 5282-5288; J.-W. Shin, N. I. Hammer, E. G. Diken, M. A. Johnson, R. S. Walters, T. D. Jaeger, M. A. Duncan, R. A. Christie, K. D. Jordan, Science 2004, 304, 1137-1140; J. A. Fournier, C. J. Johnson, C. T. Wolke, G. H. Weddle, A. B. Wolk, M. A. Johnson, Science 2014, 344, 1009-1012. 4

Global minimum energy structures Mid-IR extensively studied in the past Exploratory Near-IR spectra by Y. T. Lee and H.-C. Chang NIR absorptions are important for the radiative balance of the Earth (protonated water dimer and trimer are fairly abundant in the atmosphere) H+(H2O)3 H+(H2O)4 Need for an extensive study of NIR: Entire accessible spectral range More cluster sizes Comparison to VPT2 computations H+(H2O)4 H+(H2O)5 C. C. Wu, C. Chaudhuri, J. C. Jiang, Y. T. Lee, H. C. Chang, J. Chin. Chem. Soc. 2002, 49, 769-775; K. L. Aplin, R. A. McPheat, J. Atmos. Sol.-Terr. Phys. 2005, 67, 775-783. 5

Ions generated in pulsed electric discharge/supersonic expansion Experimental setup I Ions generated in pulsed electric discharge/supersonic expansion Ar carrier gas seeded with water vapour Mass-selection of ions of interest Photodissociation with tunable OPO/OPA laser system Review: M. A. Duncan, Rev. Sci. Instrum. 2012, 83. 6

Produced Cluster Sizes A broad distribution of protonated water clusters is observed. 7

Experimental setup II OPO OPA 1 crystal angle tuned 4 crystals signal (not used) idler 532 nm 1064 nm KTP oscillator KTA diff. gen. + amp of idler beam Tunable 4850-7350 cm−1 2050-4550 cm−1 Nd:YAG 10 Hz 8

Photodissociation Photodissociation of mass-selected clusters IR spectrum is collected as fragmentation yield vs. laser wavelength 9

Hydronium 2.03 Å 10

Zundel 11

Eigen Controversy: H. Wang, N. Agmon, J. Phys. Chem. A 2017, 121, 3056-3070. 12

Overview of H+(H2O)n with n=1-4 13

Comparison of larger cluster sizes Broad band around 5300 cm−1 due to H-bound H3O+ Two sharp bands around 7200 cm−1 assigned to νs and νs+νas Sharp bands vanish at larger cluster sizes due to decrease of A-type water molecules 14

Summary We have measured NIR spectra of small protonated water clusters up to H+(H2O)8 VPT2 theory is in good agreement with experimental data Further high-resolution studies are desirable due to the atmospheric relevance of the small clusters 14

Thanks for your attention!!! Acknowledgment Prof. Dr. Michael A. Duncan David C. McDonald II Prof. Dr. Anne B. McCoy Alexander von Humboldt-Foundation Thanks for your attention!!!