A MAPS-based readout of an electromagnetic calorimeter for the ILC

Slides:



Advertisements
Similar presentations
Monolithic Active Pixel Sensor for aTera-Pixel ECAL at the ILC J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
Advertisements

SiW ECAL R&D in CALICE Nigel Watson Birmingham University For the CALICE Collab. Motivation CALICE Testbeam Calibration Response/Resolution MAPS Option.
A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.
J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy
Henri Videau LLR Ecole polytechnique - IN2P3/CNRSCalor Calorimetry optimised for jets Henri Videau Jean- Claude Brient Laboratoire Leprince-Ringuet.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
Adding electronic noise and pedestals to the CALICE simulation LCWS 19 – 23 rd April Catherine Fry (working with D Bowerman) Imperial College London.
Jaap Velthuis, University of Bristol SPiDeR SPiDeR (Silicon Pixel Detector Research) at EUDET Telescope Sensor overview with lab results –TPAC –FORTIS.
Testbeam Requirements for LC Calorimetry S. R. Magill for the Calorimetry Working Group Physics/Detector Goals for LC Calorimetry E-flow implications for.
Anne-Marie Magnan Imperial College London A MAPS-based digital Electromagnetic Calorimeter for the ILC on behalf of the MAPS group: Y. Mikami, N.K. Watson,
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia 1 MAPS-based ECAL Option for ILC ECFA 2006, Valencia, Spain Konstantin.
CALICE-UK and the ILD detector Nigel Watson (Birmingham Univ.) For the CALICE UK group  Motivation  Testbeam  Particle Flow  Physics Studies  MAPS.
10 Nov 2004Paul Dauncey1 MAPS for an ILC Si-W ECAL Paul Dauncey Imperial College London.
Thursday, May 10th, 2007 Calice Collaboration meeting --- A.-M. Magnan --- IC London 1 Progress Report on the MAPS ECAL R&D on behalf of the MAPS group:
RAL, 25-Jan-2005Nigel Watson / CCLRC-RAL PPD CALICE Calorimetry for LC  Physics motivation  Calorimetry  Design Considerations  CALICE  Status  Future.
7 Sept 2007Paul Dauncey - Calorimetry1 UK Opportunities in SiD Calorimetry Paul Dauncey Imperial College London.
November 30th, 2006MAPS meeting - Anne-Marie Magnan - Imperial College London 1 MAPS simulation Application of charge diffusion on Geant4 simulation and.
1 The MAPS ECAL ECFA-2008; Warsaw, 11 th June 2008 John Wilson (University of Birmingham) On behalf of the CALICE MAPS group: J.P.Crooks, M.M.Stanitzki,
MAPS ECAL Nigel Watson Birmingham University  Overview  Testing  Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov, R.Turchetta,
A preliminary analysis of the CALICE test beam data Dhiman Chakraborty, NIU for the CALICE Collaboration LCWS07, Hamburg, Germany May 29 - June 3, 2007.
17 May 2007LCWS analysis1 LCWS physics analysis work Paul Dauncey.
High Granularity ECAL Study Using SLIC Nigel Watson Introduction Software Tools Framework Results Summary [Simulations by J.Lilley, Birmingham/Durham summer.
Rutherford Appleton Laboratory Particle Physics Department A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill factor.
Development of Particle Flow Calorimetry José Repond Argonne National Laboratory DPF meeting, Providence, RI August 8 – 13, 2011.
SPiDeR  SPIDER DECAL SPIDER Digital calorimetry TPAC –Deep Pwell DECAL Future beam tests Wishlist J.J. Velthuis for the.
The CALICE Si-W ECAL - physics prototype 2012/Apr/25 Tamaki Yoshioka (Kyushu University) Roman Poschl (LAL Orsay)
1 Realistic top Quark Reconstruction for Vertex Detector Optimisation Talini Pinto Jayawardena (RAL) Kristian Harder (RAL) LCFI Collaboration Meeting 23/09/08.
SiW ECAL Technological Prototype Test beam results Thibault Frisson (LAL, Orsay) on behalf of the CALICE collaboration.
Lepton Collider Increased interest in high energy e + e - collider (Japan, CERN, China) STFC funded us for £75k/year travel money in 2015 and 2016 to re-
18 Sep 2008Paul Dauncey1 The UK MAPS/DECAL Project Paul Dauncey for the CALICE-UK MAPS group.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 1 Paul Dauncey Imperial College London.
Pion Showers in Highly Granular Calorimeters Jaroslav Cvach on behalf of the CALICE Collaboration Institute of Physics of the ASCR, Na Slovance 2, CZ -
J. Crooks STFC Rutherford Appleton Laboratory
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 2 Paul Dauncey Imperial College London.
13 July 2005 ACFA8 Gamma Finding procedure for Realistic PFA T.Fujikawa(Tohoku Univ.), M-C. Chang(Tohoku Univ.), K.Fujii(KEK), A.Miyamoto(KEK), S.Yamashita(ICEPP),
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Prague September TWEPP-07 Topical Workshop on Electronics for.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 3 Paul Dauncey, Imperial College London.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC Marcel Stanitzki STFC-Rutherford Appleton Laboratory Y. Mikami, O. Miller,
Custom mechanical sensor support (left and below) allows up to six sensors to be stacked at precise positions relative to each other in beam The e+e- international.
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
Individual Particle Reconstruction The PFA Approach to Detector Development for the ILC Steve Magill (ANL) Norman Graf, Ron Cassell (SLAC)
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
MAPS ECAL Nigel Watson Birmingham University  Technical Status  Future Plans  Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov,
12/20/2006ILC-Sousei Annual KEK1 Particle Flow Algorithm for Full Simulation Study ILC-Sousei Annual KEK Dec. 20 th -22 nd, 2006 Tamaki.
Monolithic and Vertically Integrated Pixel Detectors, CERN, 25 th November 2008 CMOS Monolithic Active Pixel Sensors R. Turchetta CMOS Sensor Design Group.
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
18 Sep 2008Paul Dauncey 1 DECAL: Motivation Hence, number of charged particles is an intrinsically better measure than the energy deposited Clearest with.
9 Sep 2008Paul Dauncey1 MAPS/DECAL Status Paul Dauncey for the CALICE-UK MAPS group.
SPiDeR  Status of SPIDER Status/Funding Sensor overview with first results –TPAC –FORTIS –CHERWELL Beam test 09 Future.
Hadrons in a SiW Electromagnetic Calorimeter for a Future Linear Collider Roman Pöschl LAL Orsay LHC EUDET Annual Meeting DESY Hamburg September/October.
Marcel Stanitzki 1 The MAPS ECAL Status and prospects Fermilab 10/Apr/2007 Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
for the SPiDeR collaboration (slides from M. Stanitski, Pixel2010)
Felix Sefkow DESY LDC at Vienna November 17, 2005
CEPC 数字强子量能器读出电子学预研进展
Requirements and Specifications for Si Pixels Sensors
Update on DECAL studies for future experiments
SiD Calorimeter R&D Collaboration
Studies with PandoraPFA
Calorimetry for a CLIC experiment
5% The CMS all silicon tracker simulation
Argonne National Laboratory
CALICE: Major Items Since September
Detector Optimization using Particle Flow Algorithm
Backgrounds using v7 Mask in 9 Si Layers at a Muon Higgs Factory
Michele Faucci Giannelli
Steve Magill Steve Kuhlmann ANL/SLAC Motivation
Sheraton Waikiki Hotel
What does it change for ECAL design ?
Presentation transcript:

A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov, R.Turchetta, M.Tyndel, E.G.Villani (STFC-RAL) Y.Mikami, O.D.Miller, V.Rajovic, NKW, J.A.Wilson (Birmingham) J.A.Ballin, P.D.Dauncey, A.-M.Magnan, M.Noy (Imperial)

ILC: high performance calorimetry Essential to reconstruct jet-jet invariant masses in hadronic final states, e.g. separation of W+W, Z0Z0, tth, Zhh, H Mass (jet1+jet2) Mass (jet3+jet4) E/E = 60%/E E/E = 30%/E Equivalent best LEP detector Goal at ILC LEP/SLD: optimal jet reconstruction by energy flow Explicit association of tracks/clusters Replace poor calorimeter measurements with tracker measurements – no “double counting” Little benefit from beam energy constraint, cf. LEP Nigel Watson / Birmingham EPS'07, 19-Jul-2007

ECAL design principles Shower containment in ECAL,  X0 large Small Rmoliere and X0 – compact and narrow showers int/X0 large,  EM showers early, hadronic showers late ECAL, HCAL inside coil Lateral separation of neutral/charged particles/’particle flow’ Strong B field to suppresses large beam-related background in detector Compact ECAL (cost of coil) Tungsten passive absorber Silicon pixel readout, minimal interlayer gaps, stability “Swap-in” alternative to Si diode detector designs, e.g. in LDC, SiD CMOS process, more mainstream: Industry standard, multiple vendors (schedule, cost) (At least) as performant – ongoing studies Simpler assembly Power consumption larger – but better thermal properties Nigel Watson / Birmingham EPS'07, 19-Jul-2007

Weighted no. pixels/event Incoming photon energy (GeV) Basic concept for MAPS Swap ~0.5x0.5 cm2 Si pads with small pixels “Small” := at most one particle/pixel 1-bit ADC/pixel, i.e. Digital ECAL Effect of pixel size How small? EM shower core density at 500GeV is ~100/mm2 Pixels must be<100100mm2 Our baseline is 5050mm2 Gives ~1012 pixels for ECAL – “Tera-pixel APS” Weighted no. pixels/event 50mm >1 particle/ pixel 100mm Incoming photon energy (GeV) Nigel Watson / Birmingham EPS'07, 19-Jul-2007

Tracking calorimeter 5050 μm2 MAPS pixels ZOOM SiD 16mm2 area cells

Geant4 energy of simulated hits Physics simulation 0.5 GeV MPV = 3.4 keV σ = 0.8 keV 5 GeV 200 GeV Geant4 energy of simulated hits Ehit (keV) MAPS geometry implemented in Geant4 detector model (Mokka) for LDC detector concept Peak of MIP Landau stable with energy Definition of energy: E a Npixels Artefact of MIPS crossing boundaries Correct by clustering algorithm Optimal threshold (and uniformity/stability) important for binary readout 20 GeV photons s(E)/E Threshold (keV) Nigel Watson / Birmingham EPS'07, 19-Jul-2007

Architecture-specific CALICE INMAPS ASIC1 0.18mm feature size First round, four architectures/chip (common comparator+readout logic) INMAPS process: deep p-well implant 1 μm thick under electronics n-well, improves charge collection 4 diodes Ø 1.8 mm Architecture-specific analogue circuitry Nigel Watson / Birmingham EPS'07, 19-Jul-2007

Device level simulation Physics data rate low – noise dominates Optimised diode for Signal over noise ratio Worst case scenario charge collection Collection time Signal/noise 0.9 μm 1.8 μm 3.6 μm Distance to diode (charge injection point) Signal/Noise Nigel Watson / Birmingham EPS'07, 19-Jul-2007

Near future plans 3 July: 1st sensors delivered to RAL Work ongoing on the set of PCBs holding, controlling and reading the sensor. Test device-level simulations using laser-based charge diffusion measurements at RAL l=1064, 532,355 nm,focusing < 2 μm, pulse 4ns, 50 Hz repetition, fully automated Cosmics and source setup, Birmingham and Imperial, respectively. Potential for beam test at DESY end of 2007 Expand work on physics simulations Test performance of MAPS ECAL in GLDC and SiD detector concepts Emphasis on re-optimisation of particle flow algorithms Nigel Watson / Birmingham EPS'07, 19-Jul-2007

Summary Concept of CMOS MAPS digital ECAL for ILC Multi-vendors, cost/performance gains New INMAPS deep p-well process (optimise charge collection) Four architectures for sensor on first chips, delivered to RAL Jul 2007 Tests of sensor performance, charge diffusion to start in August Physics benchmark studies with MAPS ECAL to evaluate performance relative to standard analogue Si-W designs, for both SiD and LDC detector concepts Nigel Watson / Birmingham EPS'07, 19-Jul-2007

Backup slides… Nigel Watson / Birmingham EPS'07, 19-Jul-2007

Type dependant area: capacitors, and big resistor or monostable Architectures on ASIC1 Presampler Preshaper Type dependant area: capacitors, and big resistor or monostable Nigel Watson / Birmingham EPS'07, 19-Jul-2007

Beam background studies purple = innermost endcap radius 500 ns reset time  ~ 2‰ inactive pixels Beam-Beam interaction by GuineaPig Detector: LDC01sc 2 scenarios studied : 500 GeV baseline, 1 TeV high luminosity Nigel Watson / Birmingham EPS'07, 19-Jul-2007

The sensor test setup 1*1 cm² in total 5 dead pixels 2 capacitor arrangements 2 architectures 6 million transistors, 28224 pixels 5 dead pixels for logic : hits buffering (SRAM) time stamp = BX (13 bits) only part with clock lines. 7 * 6 bits pattern per row 84 pixels 42 pixels Row index Data format 3 + 6 + 13 + 9 = 31 bits per hit Nigel Watson / Birmingham EPS'07, 19-Jul-2007

Impact of digitisation E initial : geant4 deposit Neighbouring hit: hit ? Neighbour’s contribution no hit ? Creation of hit from charge spread only + noise σ = 100 eV, minus dead areas : 5 pixels every 42 pixels in one direction All contributions added per pixel + noise σ = 100 eV What remains in the cell after charge spread assuming perfect P-well Nigel Watson / Birmingham EPS'07, 19-Jul-2007

Device level simulation Physics data rate low – noise dominates Optimised diode for Signal over noise ratio Worst case scenario charge collection Collection time. Using Centaurus TCAD for sensor simulation + CADENCE GDS file for pixel description Collected charge Signal/noise 0.9 μm 1.8 μm 3.6 μm Distance to diode Distance to diode Nigel Watson / Birmingham EPS'07, 19-Jul-2007

Digitisation procedure %Einit Einit Geant4 Einit in 5x5 μm² cells Apply charge spread Eafter charge spread Register the position and the number of hits above threshold + noise only hits : proba 10-6  ~ 106 hits in the whole detector BUT in a 1.5*1.5 cm² tower : ~3 hits. Importance of the charge spread : Add noise to signal hits with σ = 100 eV (1 e- ~ 3 eV  30 e- noise) Sum energy in 50x50 μm² cells Esum Nigel Watson / Birmingham EPS'07, 19-Jul-2007