3. Physical Layer – Cell Transport Methods

Slides:



Advertisements
Similar presentations
ICOM 6115©Manuel Rodriguez-Martinez ICOM 6115 – Computer Networks and the WWW Isidoro Couvertier, Ph.D. Lecture 11.
Advertisements

Synchronous Optical Networks SONET
4/11/40 page 1 Department of Computer Engineering, Kasetsart University Introduction to Computer Communications and Networks CONSYL Digital Carrier.
A TDM realization TDM systems are critical in timing
Chapter 8 Multiplexing Frequency-Division Multiplexing
Synchronous Optical Networks (SONET)
COMT 2201 Carrier Systems, Multiplexing. COMT 2202 Carrier Systems General Overview.
Synchronous Digital Hierarchy Eleventh Meeting. History of Multiplexing Synchronous digital hierarchy (SDH) is a world- wide standard for digital communication.
Connection-Oriented Networks – Wissam FAWAZ1 Chapter 2: SONET/SDH and GFP TOPICS –T1/E1 –SONET/SDH - STS 1, STS -3 frames –SONET devices –Self-healing.
On Job Training July 2006 PT Indonesia Comnets Plus
SONET Ashwini R Ujjinamatada 24 th October What is SONET ? SONET stands for Synchronous Optical Network. is a standard for optical telecommunications.
SONET. Telephone Networks {Brief History} Digital carrier systems –The hierarchy of digital signals that the telephone network uses. –Trunks and access.
SONET / SDH Nirmala Shenoy Information Technology Department
McGraw-Hill©The McGraw-Hill Companies, Inc., 2001 SONET/SDH Synchronous Optical Network/ Synchronous Digital Hierarchy SONET was developed by ANSI SDH.
Synchronous Optical Network (SONET) Fall Semester, School of Computer Science & Engineering, Seoul National University. Professor Yanghee Choi Student.
Chapter 4 Circuit-Switching Networks 4.1 Multiplexing 4.2 SONET Transport Networks Circuit Switches The Telephone Network Signaling Traffic and Overload.
1 SONET: Synchronous Optical Network Carey Williamson University of Calgary.
Synchronous Optical Networks SONET Advanced Computer Networks.
Synchronous Optical Networks (SONET) Advanced Computer Networks.
Data and Computer Communications Eighth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 8 – Multiplexing.
COE 341: Data & Computer Communications (T062) Dr. Marwan Abu-Amara
1 K. Salah Module 3.3: Multiplexing WDM FDM TDM T-1 ADSL.
CSCI-370/EENG-480 Computer Networks
COE 342: Data & Computer Communications (T042) Dr. Marwan Abu-Amara Chapter 8: Multiplexing.
COE 341: Data & Computer Communications (T061) Dr. Marwan Abu-Amara Chapter 8: Multiplexing.
TELECOMMUNICATIONS SYSTEMS AND TECHNOLOGY PART 4-2.
Synchronous Optical Networks SONET
ATM over SONET/SDH Fiksman Evgeny Gurovich Alexander DigLab Seminar.
3. Physical Layer – Cell Transport Methods SONET (SYNCHRONOUS OPTICAL NETWORK)
SONET MULTIPLEXING By Sadhish Prabhu. Multiplexing principles of SONET Mapping —used when tributaries are adapted into VTs by adding justification bits.
SONET stand for Synchronous Optical NETwork SONET ANSI A ISI It is developed By ANSI( A merican I nternational S tandard I nstitute). It is a synchronous.
Chapter 14 Other Wired Networks Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Plesiochronous Digital Hierarchy (PDH) Explained by Mohamed yamman fattal Under the supervision of :eng.nada alkateeb.
ATM over SONET~Kavitha Sriraman1 ATM Over SONET By: Kavitha Sriraman, CEPE, Dept of ECE, Drexel University,
Chapter Objectives After completing this chapter you will be able to: Describe the various PDH standards Describe the operation and the frame format, of.
T305: Digital Communications
NATIONAL INSTITUTE OF SCIENCE & TECHNOLOGY Presented by: Sanjib Kumar Nayak Technical Seminar Presentation SYNCHRONOUS DIGITAL HIERARCHY Presented.
Y(J)S SONET Slide 1 SONET. Y(J)S SONET Slide 2 The PSTN circa 1900 pair of copper wires “local loop” manual routing at local exchange office (CO) Analog.
1 William Stallings Data and Computer Communications 7 th Edition Chapter 8 Multiplexing.
17.1 Chapter 17 SONET/SDH Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 SONET/SDH. 2 T1/E1 Time division multiplexing Allows a link to be utilized simultaneously by many users.
Data Communications, Kwangwoon University
CS 4594 Broadband Communications
Chapter 17 SONET/SDH Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
17.1 Chapter 17 SONET/SDH Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 14 Other Wired Networks 14.# 1
SONET is used as a WAN. ANSI standard – SONET ITU-T standard – SDH Both are fundamentally similar and compatible.
Multiplexing.
SONET. Introduction SONET SONET - S ynchronous O ptical NET work (North America) It is used as a transport network to carry loads from WANs. SONET was.
Muhammad Mateen Yaqoob Department of Computer Science COMSATS Institute of Information Technology, Abbottabad.
T305: DIGITAL COMMUNICATIONS Arab Open University-Lebanon Tutorial 51 T305: Digital Communications Block II – Part I - Synchronous Digital Hierarchy.
Chapter 2 PHYSICAL LAYER.
Bandwidth Utilization: Multiplexing and Spreading
NET 3710 PCM.
E1 Structure and Traffic Mapping
PRESENTATION BY SRIDHARSAN T P
Synchronous Digital Hierarchy
Bandwidth Utilization
Bandwidth Utilization: Multiplexing and Spreading
Chapter 4 Circuit-Switching Networks
Telecommunications & Networks
Chapter 4: Digital Transmission
Presented by Radha Gummuluri ECE-E 641 Fiber Optic Communications
Switching Techniques In large networks there might be multiple paths linking sender and receiver. Information may be switched as it travels through various.
Digital Transmission Systems Part 3
UNIT I – FRAME RELAY AND ISDN
Fiber Optic Communication By
Bandwidth Utilization: Multiplexing and Spreading
Synchronous Optical Network (SONET)
Lecture 5 Multiplexing.
Presentation transcript:

3. Physical Layer – Cell Transport Methods

The Cell Transport Method Early 60’s all switching and transmission systems were analog. Experts were watching on PCM to transform analog voice signals into digital bit streams. Why?  Because too many copper wires in the streets and not enough space for new ones, e.g., using 4 copper wires, a digital stream could transmit many voice signals with better quality than analog systems. Around 1965, in Holmdel, NJ, AT&T, the US standards of 24 voice signals multiplexed together to form a 1.544 Mbps DIGITAL SIGNAL called DS-1 was born. Each signal needs a 64 kbps stream; this is the product of 8 kHz sampling (due to Nyquist law) and 8 bit per sample coding to tolerate multiple (A/D and D/A) conversions (an important requirement at that time). In 1968, Europeans devised a similar standard with 30 voice channels plus a channel for “framing” and a channel for “signaling” for a total of 32*64 kbps = 2.048 Mbps E1 format. (ETSI -> European Telecommunications Standards Institute)

What is Framing? It is a method of indicating where to begin counting channels so that the DEMULTIPLEXER knows which is channel 1,2,3,etc… A sequence of bits repeated in each frame (8000 frames/sec) forms a pattern that is difficult for data to initiate. Thus, by observing the bit stream for a certain period of time, the framing mechanism can figure out where a channel is. Frame Channel 1 Framing Bit (193) 8 Bits 8 Bits 8 Bits 8 Bits 8 Bits 8 * 24 = 192 + 1 = 193 Bits 125 sec = 1/8000 sec 193 Bits each 125 sec = 1.544 Mbps (Aggregate Bit Rate)

Each voice signal sampled at rate 8000 sample or once every 125 sec. Samples quantized 8-bit sequence. Typical PCM requires 64 kbps transmission capacity. 24 8-bit voice channels into one time stream operating at 1.544 Mbps.

Digital Hierarchy 2 1 24 4 7 … DS-0 DS-1 DS1-C DS-2 DS-3 DS-4 64 Kbps/Channel 1.544 Mbps/Channel 3.152 Mbps/Channel 6.312 Mbps/Channel 44.376 Mbps/Channel 274.176 Mbps/Channel Multiplexing means taking a certain number of DS-1 or E-1 signals and putting them together as shown above. European: 4 E-1s  E-2 at 8 Mbps 4 E-2s  E-3 at 34 Mbps 4 E-3s  E-4 at 140 Mbps 4 E-3s  E-4 at 565 Mbps (not standardized) REMARK: DS-1, DS1-C etc… refer to the multiplexing scheme used for carrying information. Network providers supply transmission facilities to support these various multiplexed signals referred as CARRIER SYSTEMS designated as “T”. T1 Carrier for DS-1 (in 80’s out; Private Voice, Private Data, Video Teleconf., High Speed Faxing) T3 Carrier for DS-3, etc…

What is a Synchronous Network? The last two decades, digital switching has taken over from analog switching. This means all digital systems can be connected and therefore synchronized with each other. Problem : From synchronized network perspective Each time it is necessary to pick out or insert a stream, i.e., E-1, from a high-order stream, i.e., 140 Mbps E-4, it is necessary to perform all the operations of the three multiplexers that created the E-4 => Called ADD/DROP. These multiplexers create a network in which measuring performance, rerouting signals after network failures and managing rerouted network elements from work centers are all extremely difficult.

PDH = Plesiochronous Digital Hierarchy At each step, the multiplexer must take into account that each tributary clock has different speeds. Each clock is allowed to have certain range of speeds. The multiplexer reads each tributary at the highest allowed clock speed and when there are no bits in the input buffer STUFFING wll be done. It also has a mechanism to signal to the demultiplexer that it has performed stuffing and the demultiplexer must know which bit to throw out (this is called positive stuffing). “Bit stuffing” used to maintain the clock capacity.

Structure of a DS-1 or E-1 stream 125 s (=1/8000 s) Framing bit 24 or 30 voice channels … Structure of a DS-1 or E-1 stream Imagine four tributary streams 1 bit from into higher-order stream… Plus a higher order framing bit or byte. PDH Multiplexing

PDH DS1 Input = 1,544,000 Bps 1,545,796 Bps Stuffing = 1796 Bps Synchronized the DS1 DS1 Input = 1,545,796 Bps 1,545,796 Bps Stuffing = 0 Bps DS2 Output = 6,312,000 Bps Asynchronous Input DS1 Input = 1,540,429 Bps Stuffing = 5367 Bps 1,545,796 Bps DS3 DS1 Input = 1,544,500 Bps Stuffing = 1296 Bps 1,545,796 Bps 1,545,796 Bps (intermediate DS1 rate) -obtained by adding a given DS1 input rate to its associated stuffing rate 6,312,000 Bps (DS2 output rate) -obtained by adding the 4 intermediate DS1 rates and the DS2 overhead rate DS2 Overhead = 128, 816 Bps

SDH = SYNCHRONOUS DIGITAL HIERARCHY SONET = SYNCHRONOUS OPTICAL NETWORK Takes advantage of the totally synchronized network. Unifies the North-American & European standards. Can be used on both fiber and radio. Put some intelligence in the multiplexers for solving operations and maintenance problems, especially protection switching. Make multi-vendor networks manageable. Be compatible with existing PDH streams.

What is SDH? The basic time constant of 8000 frames per second is preserved in SDH. What can be transmitted in 125 µsec? The “lowest” level of the synchronous hierarchy. Synchronous Transport Module 1 (STM-1) at 155.520 Mbit/s. The 19,440 bits in a 125 μs frame are represented by this rectangle of 9 rows with 270 bytes/row for a total of 2430 bytes. 270 bytes total 261 bytes for information 9 bytes Framing Section overhead 155.520 Mbit/s = (270  9  8) bits/frame 8000 frames / s 0 µsec 125 µsec Time Pointers Figure. SDH Structure

All information is collected in bytes and no longer in bits. The bytes are transmitted one row at a time starting from the point labeled “0 μsec”. POINTERS – KEYS TO SUCCESS !!! The tributaries to a multiplexer each have a frame that is not aligned in time with the other tributaries, nor with the frame of the output stream. In PDH, the multiplexer does not even need to know where this frame is in time, i.e., the task of the demultiplexer in the lower hierarchical level. This is why ADD/DROP operations are so expensive. To solve this problem, the SDH multiplexer finds where the frame starts in each tributary. It calculates a pointer that tells where in the synchronous transport module level-1 (STM-1) frame it has placed the tributary frame.

A 140 Mbps E-4 Signal in an STM-1 Frame Framing …… Pointers Time Beginning of frame of 140Mbps carried in STM-1 Framing Pointers End of frame • It begins midway through the STM-1 frame and ends midway through the next one. • A pointer indicates its position. Remark : The world is not synchronous. If the tributary frame slips with respect to the STM-1 frame, the system just changes the pointer.

VIRTUAL CONTAINERS (VCs) AND ADMINISTRATIVE UNITS (AUs) • The PDH signal is not just copied into the STM-1 frame as it arrives. • For example, it cannot use the space reserved for overhead and it cannot fill up the space available in the 261x9 bytes . So all PDH signals are packaged in appropriate “VIRTUAL CONTAINERS”. • This repackaging is called “ADAPTATION”. • There are many different VCs, one for each type of PDH signal to be carried. We show VC-4. The VC-4, together with the pointer is called an “ADMINISTRATIVE UNIT 4” or AV-4. 270 bytes 261 bytes Administrative Unit 4 = data plus pointers OA & M info 140 Mbps PHD signal Stuffing Virtual Container and Administrative Unit Virtual Container 4

HIGHER ORDER MULTIPLEXING : STM-4 How to construct the next level, called the Synchronous Transport (STM-4) module 4 at 622 Mbps? 4 AV-4 are combined into an “ADMINISTRATIVE UNIT GROUP”, (AUG) and placed in an STM-4 frame which is still 125 sec long but has four times as many bytes as an STM-1.

Generation of the SDH-based User-Network Interface Signal The STM cell stream is mapped into the C-4 frame which is 9 row x 260 column container corresponding to the transfer capability of 149.760 Mbps. C-4 is packed in the virtual container VC-4 along with the VC-4 POH. The C-4 is then mapped into the 9 x 270 byte frame called STM-1. The AU-4 pointer of the STM-1 frame is used to find the first VC-4 byte. The POH bytes J1, B3, C2, G1 and H4 are activated. The H4 pointer will be set at the sending side to indicate the next occurrence of a cell boundary.

. . . . . . Figure. STM-4 Framing Section overhead Section overhead 4 x 270 bytes 9 bytes Framing Section overhead . . . Pointers Section overhead (a) 4 x 270 bytes 9 bytes Framing . . . (b) Figure. STM-4

This is the 2.4 Gbps rate, the highest are defined so far. Every byte in every VC of all 4 tributaries is easily found using the pointers. Framing Pointers ☆            7            • • • ▼ ☎        ¶      ♠ O   ♥  STM-16 is created in the same way as the STM-4, by interleaving 4 STM-4 signals. This is the 2.4 Gbps rate, the highest are defined so far.

SDH-BASED INTERFACE at 622.080 Mbps 270 x 4 bytes STM-4 payload SOH 9 x 4 261 x 4 SOH Section overhead STM-4 Synchronous transport module 4 125 usec 9 rows 622.080 Mbps frame (STM-4) can be created straightforwardly from four STM-1s. The STM-4 payload can be structured either simply as 4 x VC-4 or as one block. The available ATM cell transfer capability would be 4 x 149.760 mbps = 599.040 Mbps for the first case. In the second case [ 9 x 261 x 4 byte - 9 bytes POH ] x 8 kHz = 600.768 Mbps.

SONET/SDH SIGNAL HIERARCHY OC Level SONET Designation CCITT Designation Data Rate Payload Rate (STS Level) (SDH Level) (MBPS) OC-1 STS-1 51.84 50.112 OC-3 STS-3 STM-1 155.52 150.336 OC-9 STS-9 STM-3 466.54 451.008 OC-12 STS-12 STM-4 622.08 601.344 OC-18 STS-18 STM-6 933.12 902.016 OC-24 STS-24 STM-8 1244.16 1202.688 OC-36 STS-36 STM-12 1866.24 1804.032 OC-48 STS-48 STM-16 2488.32 2405.376 . . . . . OC-192 STS-192 STM-64 9953.28 . OC : Optical Carrier STS : Synchronous Transport Signal STM : Synchronous Transport Module General Formula N*51.84 STM *n OC-N STS-N

Table. SONET Equivalent to Plesiochronous Digital Hierarchy North American SONET CCITT/ITU SDH SONET Rate SDH Rate VT VC (Mbps) (Mbps) VT1.5 VC-11 1.544 VT2.0 VC-12 2.048 VT3.0 3.152 VT6.0 VC-2 6.312 6.312 VC-3 44.736 34.368 VC-4 139.264 STS-1 51.84 STS-3 STM-1 155.52 155.52 STS-12 STM-4 622.08 622.08

Table. Summary of International Plesiochronous Digital Hierarchy Digital Bit Rate (Mbps) Multiplexing Number of Level Voice Channels North America Europe Japan 0 1 0.064 0.064 0.064 1 24 1.544 1.544 30 2.048 48 3.152 3.152 2 96 6.312 6.312 120 8.448 3 480 34.368 32.064 672 44.376 1344 91.0531 1440 97.728 4 1920 139.264 4032 274.176 5760 397.200 5 7680 565.148

Table. North American Digital Hierarchy Signal Name Rate Structure Number of DS0s DS0 64k bps Time Slot 1 DS1 1.544 Mbps 24xDS0 24 DS1c 2xDS1 48 DS2 2xDS1c 96 DS3 44.736 Mbps 7xDS2 672 Table. North American Digital Hierarchy STS-N or OC-N level Bit Rate (Mbps) Number of DS0s Number of DS1s Number of DS3s 1 51.84 672 28 3 155.52 2,016 84 6 311.04 4,032 168 9 466.56 6,048 252 12 622.08 8,064 336 18 933.12 12,096 504 24 1,244.16 16,128 36 1,866.24 24,192 1008 48 2,488.32 32,256 1344 96 4,976.00 64,512 2688 192 9,952.00 129,.024 5376

SONET SYSTEM HIERARCHY PHOTONIC. (Type of fiber; dispersion characteristics: lasers). SECTION. (Basic SONET Frames are created. Electronic signals are converted to photonic ones). LINE. (For synchronization, multiplexing of data into the SONET frames protection and maintenance functions and switch). PATH. (End-to-end transport of data at an appropriate signaling speed).

Figure. SONET System Hierachy Service DS1, DS3, cells Envelope Path layer Line Layer Section Layer Photonic layer STS-N blocks Frame Light Terminal Regenerator STS multiplexer Terminal (a) Logical hierarchy SONET multiplexer (PLE + LTE) Add-Drop multiplexer (LTE) SONET multiplexer (PLE + LTE) Repeater (STE) Repeater (STE) Terminals Section Section Section Section Terminals Line Line Path (b) Physical hierarchy Figure. SONET System Hierachy

Figure shows the physical realization of the logical layers. A section is the basic physical building and represents a single run of optical cable between two optical fiber transmitter/receivers. For shorter runs, the cable may run directly between two end units. For longer distances, regenerating repeaters needed. The repeater is a simple device that accepts a digital stream of data on one side and regenerates and repeats each out the other side Issues of synchronization and timing need to be addressed. A line is a sequence of one or more sections such that the internal signal or channel structure of the signal remains constant. Endpoints and intermediate switches/multiplexers that may add or drop channels terminate a line. Finally, a path connects to end terminals; it corresponds to an end-to-end circuits. Data are assembled at the beginning of a path and are not accessed or modified until they are disassembled at the other end of the path.

TABLE. STS-1 Overhead Bits Section Overhead A1,A2: Framing bytes = F6, 28 hex C1: STS-1 1D identifies the STS-1 number ( 1 to N) for each STS-1 within an STS-N multiplex B1: Bit-interleaved parity type providing even parity previous STS-N frame after scrambling E1: Section-level 64-kbps PCM orderwire (local orderwire) F1: 64-kbps channel set aside for user purposes D1-D3: 192-kbps data communications channel for alarms, maintenance, control, and administration between sections Line Overhead H1-H3: Pointer bytes used in frame alignment and frequency adjustment of payload data B2: bit-interleaved parity for line-level error monitoring K1,K2: Two bytes allocated for signaling between line-level automatic protection switching equipment D4-D12: 576-kbps data communications channel for alarms,maintenance, control, monitoring, and administration at the line level Z1-Z2: Reserved for future use E2: 64-kbps PCM voice channel for line-level orderwire Path Overhead J1: 64-kbps channel used to repetitively send a 64-byte fixed-length string so a receiving terminal can continuously verify the integrity of a path; the contents of the message are user-programmable. B3: Bit-interleaved parity at the path level C2: STS path signal label to designate equipped versus unequipped STS signals and, for equipped signals, the specific STS payload mapping that might be needed in receiving terminals to interpret the payloads G1: Status byte sent from path-terminating equipment back to path-originating equipment to convey status of terminating equipment and path error performance F2: 64-kbps channel for path user H4: Multiframe indicator for payloads needing frames that are longer than a single STS frame; multiframe indicators are used when packing lower-rate channels( virtual tributaries) into the SPE. Z3-Z5: Reserved for future use.