Peubah Acak Diskrit Pertemuan 07

Slides:



Advertisements
Similar presentations
Pertemuan 03 Teori Peluang (Probabilitas)
Advertisements

1 Pertemuan 07 Hitung Peluang Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Analisis Varians/Ragam Klasifikasi Dua Arah Pertemuan 18 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Copyright ©2005 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
Peubah Acak Kontinu Pertemuan 09 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Chapter 4 Probability and Probability Distributions
1 Pertemuan 07 Variabel Acak Diskrit dan Kontinu Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Copyright ©2006 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
1 Pertemuan 07 Pendugaan Parameter Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 06 Kejadian Bebas dan Bersyarat Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 09 Peubah Acak Kontinu Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 07 Peubah Acak Diskrit Matakuliah: I0134 -Metode Statistika Tahun: 2007.
1 Pertemuan 05 Ruang Contoh dan Peluang Matakuliah: I0134 –Metode Statistika Tahun: 2007.
1 Pertemuan 04 Ukuran Simpangan dan Variabilitas Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 04 Peubah Acak dan Sebaran Peluang Matakuliah: A0392 – Statistik Ekonomi Tahun: 2006.
1 Pertemuan 05 Peubah Acak Kontinu dan Fungsi Kepekatannya Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 02 Penyajian Data dan Distribusi Frekuensi Matakuliah: I0134 – Metode Statistika Tahun: 2007.
Copyright ©2011 Nelson Education Limited. Probability and Probability Distributions CHAPTER 4 Part 2.
14/6/1435 lecture 10 Lecture 9. The probability distribution for the discrete variable Satify the following conditions P(x)>= 0 for all x.
5.3 Random Variables  Random Variable  Discrete Random Variables  Continuous Random Variables  Normal Distributions as Probability Distributions 1.
1 Pertemuan 16 Pendugaan Parameter Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
1 MATB344 Applied Statistics Chapter 4 Probability and Probability Distributions.
Probability Distributions
Aplikasi Sebaran Normal Pertemuan 12 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 10 Sebaran Binomial dan Poisson Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Distribusi Peubah Acak Khusus Pertemuan 08 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Sebaran Normal dan Normal Baku Pertemuan 11 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
CHAPTER 6 Random Variables
CHAPTER 6 Random Variables
MATB344 Applied Statistics
CHAPTER 6 Random Variables
Pertemuan 11 Sebaran Peluang Hipergeometrik dan Geometrik
Probability and Discrete Probability Distributions
Random Variables.
PROBABILITY AND PROBABILITY RULES
Chapter 6: Random Variables
UNIT 8 Discrete Probability Distributions
Discrete and Continuous Random Variables
Pertemuan 13 Sebaran Seragam dan Eksponensial
Aim – How do we analyze a Discrete Random Variable?
CHAPTER 6 Random Variables
Basic Probability aft A RAJASEKHAR YADAV.
Introduction to Probability and Statistics
Chapter 6: Random Variables
Chapter 6: Random Variables
CHAPTER 6 Random Variables
CHAPTER 6 Random Variables
Warmup Consider tossing a fair coin 3 times.
Chapter 6: Random Variables
Chapter 6: Random Variables
CHAPTER 6 Random Variables
12/6/ Discrete and Continuous Random Variables.
Kejadian Bebas dan Bersyarat Pertemuan 06
Chapter 6: Random Variables
Principles of Statistics
CHAPTER 6 Random Variables
CHAPTER 6 Random Variables
Chapter 6: Random Variables
CHAPTER 6 Random Variables
Chapter 7: Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
CHAPTER 6 Random Variables
Chapter 6: Random Variables
Section 1 – Discrete and Continuous Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
Chapter 6: Random Variables
Presentation transcript:

Peubah Acak Diskrit Pertemuan 07 Matakuliah : L0104 / Statistika Psikologi Tahun : 2008 Peubah Acak Diskrit Pertemuan 07

Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitung peluang fungsi diskrit dan nilai harapan dan ragamnya. 3 Bina Nusantara

Distribusi peluang peubah acak Distribusi kumulatif Outline Materi Tipe Peubah Acak Distribusi peluang peubah acak Distribusi kumulatif Nilai harapan dan varians 4 Bina Nusantara

Examples: Random Variables A quantitative variable x is a random variable if the value that it assumes, corresponding to the outcome of an experiment is a chance or random event. Random variables can be discrete or continuous. Examples: x = SAT score for a randomly selected student x = number of people in a room at a randomly selected time of day x = number on the upper face of a randomly tossed die Bina Nusantara

Probability Distributions for Discrete Random Variables The probability distribution for a discrete random variable x resembles the relative frequency distributions we constructed in Chapter 1. It is a graph, table or formula that gives the possible values of x and the probability p(x) associated with each value. Bina Nusantara

Probability Histogram for x Example Toss a fair coin three times and define x = number of heads. x 3 2 1 x p(x) 1/8 1 3/8 2 3 HHH P(x = 0) = 1/8 P(x = 1) = 3/8 P(x = 2) = 3/8 P(x = 3) = 1/8 1/8 HHT HTH THH HTT Probability Histogram for x THT TTH TTT Bina Nusantara

Probability Distributions Probability distributions can be used to describe the population, just as we described samples in Chapter 1. Shape: Symmetric, skewed, mound-shaped… Outliers: unusual or unlikely measurements Center and spread: mean and standard deviation. A population mean is called m and a population standard deviation is called s. Bina Nusantara

The Mean and Standard Deviation Let x be a discrete random variable with probability distribution p(x). Then the mean, variance and standard deviation of x are given as Bina Nusantara

Example Toss a fair coin 3 times and record x the number of heads. x p(x) xp(x) (x-m)2p(x) 1/8 (-1.5)2(1/8) 1 3/8 (-0.5)2(3/8) 2 6/8 (0.5)2(3/8) 3 (1.5)2(1/8) Bina Nusantara

Symmetric; mound-shaped Example The probability distribution for x the number of heads in tossing 3 fair coins. Shape? Outliers? Center? Spread? Symmetric; mound-shaped None m = 1.5 s = .688 m Bina Nusantara

Key Concepts I. Experiments and the Sample Space 1. Experiments, events, mutually exclusive events, simple events 2. The sample space 3. Venn diagrams, tree diagrams, probability tables II. Probabilities 1. Relative frequency definition of probability 2. Properties of probabilities a. Each probability lies between 0 and 1. b. Sum of all simple-event probabilities equals 1. 3. P(A), the sum of the probabilities for all simple events in A Bina Nusantara

Key Concepts III. Counting Rules 1. mn Rule; extended mn Rule 2. Permutations: 3. Combinations: IV. Event Relations 1. Unions and intersections 2. Events a. Disjoint or mutually exclusive: P(A Ç B) = 0 b. Complementary: P(A) = 1 - P(AC ) Bina Nusantara

Key Concepts 3. Conditional probability: 4. Independent and dependent events 5. Additive Rule of Probability: 6. Multiplicative Rule of Probability: 7. Law of Total Probability 8. Bayes’ Rule Bina Nusantara

Key Concepts V. Discrete Random Variables and Probability Distributions 1. Random variables, discrete and continuous 2. Properties of probability distributions 3. Mean or expected value of a discrete random variable: 4. Variance and standard deviation of a discrete random variable: Bina Nusantara

Selamat Belajar Semoga Sukses. Bina Nusantara