Nanoparticle-based Theorem Proving
The Target Problem , add R as nil R is true !!
Experimental Section Preparation of Au nanoparticles Synthesis & Purification of (alkanethiol)-modified oligonucleotides Preparation of 3'- or 5'-(Alkanethiol)oligonucleotide-modified Au nanoparticles Preparation and Characterization of Linker DNA Characterization of DNA-Linked Au Nanoparticle Assembly Transmission Electron Microscopy (TEM) Calculations of UV-vis Spectra
The Oligomer Sequence Primer Sequence(5’→3’) Length Modification GC Content ( % ) ST¬Q AAG CAG TAG CGA CCA ATT GAC GCA AAT TGA CGT ACG TAC GCT GAA 45 mer None 46.7 ¬RPQ CAT ACA ATG AAC GCA GTC AAC GCA AGG CAG TTC AGC GTA CGT ACG 51.1 ¬P CTG CCT TGC GTT GAC 15 mer 5’-phosphate 60.0 R TGC GTT CAT TGT ATG 3’-thiol 40.0 ¬S TGG TCG CTA CTT 53.3 ¬T TCA ATT TGC GTC AAT 33.3
UV-vis Spectrum of DNA Linked Au Nanoparticle (B) (C) DNA-linked nanoparticle Assembly
Further Work Selectivity Test Assembly S1 Nuclease Digestion 15 mer
Surface-based Theorem Proving
Surfaced-based Theorem Proving 15 mer 45 mer
¬RPQ ¬T ¬S P.C N.C R ¬P ST ¬Q (a) (b) The schematic diagram of theorem proving before (a) and after (b) hybridization. The immobilized probe DNA sequences on aldehyde-coated slide glass. Molecular recognition properties by the target molecules between the probe sequences.
Experimental Section Preparation of probe DNA Preparation of Target DNA Hybridization probe & Target DNA Washing Confocal microscope detection
¬P ¬P ST¬Q ST¬Q ¬RPQ ¬T ¬S P.C N.C R ST¬Q 100 pmol 50 pmol Temp. 50°C Constant ST¬Q Temp. 60°C Constant ST¬Q ¬P
¬P ¬P ¬P ¬P ¬RPQ ¬T ¬S P.C N.C R ST¬Q 100 pmol 50 pmol Temp. 50°C Constant ¬P Temp. 60°C Constant ¬P ¬P
¬P ¬P R R ¬RPQ ¬T ¬S P.C N.C R ST¬Q 100 pmol 50 pmol Temp. 50°C Constant R Temp. 60°C Constant R ¬P
Discussion Confocal microscope 457~633 nm Detection range dye & Non-overlapping emission wavelength Eqipment condition is break down now Microarray scanner (futher exp.) False positive signal ¬P and ¬S: non-complementary sequence Why (?) GC ratio