More on Clustering in COSC 4335

Slides:



Advertisements
Similar presentations
Clustering II.
Advertisements

SEEM Tutorial 4 – Clustering. 2 What is Cluster Analysis?  Finding groups of objects such that the objects in a group will be similar (or.
Clustering (2). Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram –A tree like.
Hierarchical Clustering
Cluster Analysis: Basic Concepts and Algorithms
1 CSE 980: Data Mining Lecture 16: Hierarchical Clustering.
Hierarchical Clustering. Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram – A tree-like diagram that.
Hierarchical Clustering, DBSCAN The EM Algorithm
Data Mining Cluster Analysis: Advanced Concepts and Algorithms
Data Mining Cluster Analysis: Basic Concepts and Algorithms
DBSCAN – Density-Based Spatial Clustering of Applications with Noise M.Ester, H.P.Kriegel, J.Sander and Xu. A density-based algorithm for discovering clusters.
Qiang Yang Adapted from Tan et al. and Han et al.
Clustering Prof. Navneet Goyal BITS, Pilani
CS685 : Special Topics in Data Mining, UKY The UNIVERSITY of KENTUCKY Clustering CS 685: Special Topics in Data Mining Spring 2008 Jinze Liu.
Clustering Methods Professor: Dr. Mansouri
More on Clustering Hierarchical Clustering to be discussed in Clustering Part2 DBSCAN will be used in programming project.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ What is Cluster Analysis? l Finding groups of objects such that the objects in a group will.
Clustering II.
An Introduction to Clustering
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
SCAN: A Structural Clustering Algorithm for Networks
Cluster Analysis.
Cluster Analysis: Basic Concepts and Algorithms
© University of Minnesota Data Mining for the Discovery of Ocean Climate Indices 1 CSci 8980: Data Mining (Fall 2002) Vipin Kumar Army High Performance.
DATA MINING LECTURE 8 Clustering The k-means algorithm
Clustering Basic Concepts and Algorithms 2
Partitional and Hierarchical Based clustering Lecture 22 Based on Slides of Dr. Ikle & chapter 8 of Tan, Steinbach, Kumar.
1 CSE 980: Data Mining Lecture 17: Density-based and Other Clustering Algorithms.
Topic9: Density-based Clustering
CSE5334 DATA MINING CSE4334/5334 Data Mining, Fall 2014 Department of Computer Science and Engineering, University of Texas at Arlington Chengkai Li (Slides.
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Density-Based Clustering Methods. Clustering based on density (local cluster criterion), such as density-connected points Major features: –Discover clusters.
Ch. Eick: Introduction to Hierarchical Clustering and DBSCAN 1 Remaining Lectures in Advanced Clustering and Outlier Detection 2.Advanced Classification.
Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram – A tree like diagram that.
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach,
Clustering/Cluster Analysis. What is Cluster Analysis? l Finding groups of objects such that the objects in a group will be similar (or related) to one.
CLUSTERING DENSITY-BASED METHODS Elsayed Hemayed Data Mining Course.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Cluster Analysis This lecture node is modified based on Lecture Notes for Chapter.
DATA MINING: CLUSTER ANALYSIS (3) Instructor: Dr. Chun Yu School of Statistics Jiangxi University of Finance and Economics Fall 2015.
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εξόρυξη Δεδομένων Ομαδοποίηση (clustering) Διδάσκων: Επίκ. Καθ. Παναγιώτης Τσαπάρας.
Data Mining: Basic Cluster Analysis
Data Mining Cluster Analysis: Basic Concepts and Algorithms
Hierarchical Clustering
Data Mining Cluster Analysis: Basic Concepts and Algorithms
CSE 4705 Artificial Intelligence
Hierarchical Clustering: Time and Space requirements
Clustering CSC 600: Data Mining Class 21.
Clustering 28/03/2016 A diák alatti jegyzetszöveget írta: Balogh Tamás Péter.
What Is the Problem of the K-Means Method?
CSE 5243 Intro. to Data Mining
Hierarchical Clustering
Cluster Analysis: Basic Concepts and Algorithms
CS 685: Special Topics in Data Mining Jinze Liu
Data Mining Cluster Analysis: Advanced Concepts and Algorithms
Data Mining Cluster Analysis: Basic Concepts and Algorithms
Data Mining Cluster Techniques: Basic
Data Mining Cluster Analysis: Basic Concepts and Algorithms
CSE572, CBS598: Data Mining by H. Liu
Clustering 23/03/2016 A diák alatti jegyzetszöveget írta: Balogh Tamás Péter.
CS 685: Special Topics in Data Mining Jinze Liu
CS 485G: Special Topics in Data Mining
Data Mining Cluster Analysis: Basic Concepts and Algorithms
Clustering Analysis.
Data Mining Cluster Analysis: Basic Concepts and Algorithms
CSE572, CBS572: Data Mining by H. Liu
SEEM4630 Tutorial 3 – Clustering.
CSE572: Data Mining by H. Liu
Hierarchical Clustering
CS 685: Special Topics in Data Mining Jinze Liu
Presentation transcript:

More on Clustering in COSC 4335 Hierarchical Clustering DBSCAN

Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram A tree like diagram that records the sequences of merges or splits

Agglomerative Clustering Algorithm More popular hierarchical clustering technique Basic algorithm is straightforward Compute the proximity matrix Let each data point be a cluster Repeat Merge the two closest clusters Update the proximity matrix Until only a single cluster remains Key operation is the computation of the proximity of two clusters Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation Start with clusters of individual points and a proximity matrix p1 p3 p5 p4 p2 . . . . Proximity Matrix

Intermediate Situation After some merging steps, we have some clusters C2 C1 C3 C5 C4 C3 C4 Proximity Matrix C1 C5 C2

Intermediate Situation We want to merge the two closest clusters (C2 and C5) and update the proximity matrix. C2 C1 C3 C5 C4 C3 C4 Proximity Matrix C1 C5 C2

After Merging The question is “How do we update the proximity matrix?” C2 U C5 C1 C3 C4 C1 ? ? ? ? ? C2 U C5 C3 C3 ? C4 ? C4 Proximity Matrix C1 C2 U C5

How to Define Inter-Cluster Similarity p1 p3 p5 p4 p2 . . . . Similarity? MIN MAX Group Average Distance Between Centroids Other methods driven by an objective function Ward’s Method uses squared error Proximity Matrix

How to Define Inter-Cluster Similarity p1 p3 p5 p4 p2 . . . . MIN (single link) MAX (complete link) Group Average (average link) Distance Between Centroids Other methods driven by an objective function Ward’s Method uses squared error: http://en.wikipedia.org/wiki/Ward%27s_method Proximity Matrix

How to Define Inter-Cluster Similarity p1 p3 p5 p4 p2 . . . . MIN MAX Group Average Distance Between Centroids Other methods driven by an objective function Ward’s Method uses squared error Proximity Matrix

How to Define Inter-Cluster Similarity p1 p3 p5 p4 p2 . . . . MIN MAX Group Average Distance Between Centroids Other methods driven by an objective function Ward’s Method uses squared error Proximity Matrix

How to Define Inter-Cluster Similarity p1 p3 p5 p4 p2 . . . .   MIN MAX Group Average Distance Between Centroids Other methods driven by an objective function Ward’s Method uses squared error Proximity Matrix

Hierarchical Clustering in R https://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html (hclust) https://stat.ethz.ch/R-manual/R-patched/library/stats/html/dist.html (dist function to create distance matrices) Example R-Code: #Created by Christoph Eick for COSC 4335 at UH. #applying hierarchical clustering hc <- hclust(dist(iris), "ave") plot(hc) plot(hc, hang = -1) hd$merge

Density-based Clustering Density-based Clustering algorithms use density-estimation techniques to create a density-function over the space of the attributes; then clusters are identified as areas in the graph whose density is above a certain threshold (DENCLUE’s Approach) to create a proximity graph which connects objects whose distance is above a certain threshold ; then clustering algorithms identify contiguous, connected subsets in the graph which are dense (DBSCAN’s Approach).

DBSCAN (http://www2.cs.uh.edu/~ceick/7363/Papers/dbscan.pdf ) DBSCAN is a density-based algorithm. Density = number of points within a specified radius (Eps) Input parameter: MinPts and Eps A point is a core point if it has more than a specified number of points (MinPts) within Eps These are points that are at the interior of a cluster A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point A noise point is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points

DBSCAN Algorithm (simplified view for teaching) Create a graph whose nodes are the points to be clustered For each core-point c create an edge from c to every point p in the -neighborhood of c Set N to the nodes of the graph; If N does not contain any core points terminate Pick a core point c in N Let X be the set of nodes that can be reached from c by going forward; create a cluster containing X{c} N=N/(X{c}) Continue with step 4 Remarks: points that are not assigned to any cluster are outliers; http://www2.cs.uh.edu/~ceick/7363/Papers/dbscan.pdf gives a more efficient implementation by performing steps 2 and 6 in parallel

DBSCAN: Core, Border and Noise Points Original Points Point types: core, border and noise Eps = 10, MinPts = 4

When DBSCAN Works Well Original Points Clusters Resistant to Noise Supports Outliers Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well (MinPts=4, Eps=9.75). Original Points Problems with Varying densities High-dimensional data (MinPts=4, Eps=9.12)

DBSCAN: Determining EPS and MinPts Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance Noise points have the kth nearest neighbor at farther distance So, plot sorted distance of every point to its kth nearest neighbor Run DBSCAN for Minp=4 and =5 Core-points Non-Core-points

DBSCAN—A Second Introduction Two parameters: Eps: Maximum radius of the neighbourhood MinPts: Minimum number of points in an Eps- neighbourhood of that point NEps(p): {q belongs to D | dist(p,q) <= Eps} Directly density-reachable: A point p is directly density- reachable from a point q wrt. Eps, MinPts if 1) p belongs to NEps(q) 2) core point condition: |NEps (q)| >= MinPts p q MinPts = 5 Eps = 1 cm

Density-Based Clustering: Background (II) Density-reachable: A point p is density-reachable from a point q wrt. Eps, MinPts if there is a chain of points p1, …, pn, p1 = q, pn = p such that pi+1 is directly density-reachable from pi Density-connected A point p is density-connected to a point q wrt. Eps, MinPts if there is a point o such that both, p and q are density-reachable from o wrt. Eps and MinPts. p p1 q p q o

DBSCAN: Density Based Spatial Clustering of Applications with Noise Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points Capable to discovers clusters of arbitrary shape in spatial datasets with noise Not density reachable from core point Core Border Outlier Eps = 1cm MinPts = 5 Density reachable from core point

DBSCAN: The Algorithm Arbitrary select a point p Retrieve all points density-reachable from p wrt Eps and MinPts. If p is a core point, a cluster is formed. If p ia not a core point, no points are density-reachable from p and DBSCAN visits the next point of the database. Continue the process until all of the points have been processed.

Density-based Clustering: Pros and Cons +: can (potentially) discover clusters of arbitrary shape +: not sensitive to outliers and supports outlier detection +: can handle noise +-: medium algorithm complexities O(n**2), O(n*log(n) -: finding good density estimation parameters is frequently difficult; more difficult to use than K-means. -: usually, does not do well in clustering high- dimensional datasets. -: cluster models are not well understood (yet)