A. Kinetic Molecular Theory

Slides:



Advertisements
Similar presentations
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
Advertisements

I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as described.
I. Physical Properties (p )
Kinetic Molecular Theory. What if… b Left a basketball outside in the cold… would the ball appear to be inflated or deflated? b Which picture box do you.
Lesson 1: The Nature of Gases UNIT 9 – GAS LAWS Chapter 13 and 14.
Think About This… Gas Atmosphere This is a U-Tube Manometer. The red stuff is a liquid that moves based on the pressures on each end of the tube. Based.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
C. Johannesson I. Physical Properties (p ) Ch. 10 & 11 - Gases.
CH 11 – Physical Characteristics of Gases: Objectives Describe how the kinetic-molecular theory of matter explains ideal gases Differentiate between ideal.
Gases. Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-line motion. don’t attract or repel each.
Properties and Measuring Variables Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are.
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
A theory concerning the thermodynamic behavior of matter, especially the relationships among pressure, volume, and temperature in gases. Kinetic Molecular.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Ch Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
? Gases Chapter 4. ? Kinetic Molecular Theory Particles in an Ideal Gases…  have no volume.  have elastic collisions.  are in constant, random, straight-line.
AssignmentAssignment b Complete pre-assessment test. b Read Chapter 10, pp , and define vocabulary.
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have elastic.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
I. Physical Properties. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
Physical Properties Ch. 10 & 11 - Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
I. Physical Properties Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no (very small) volume. have elastic collisions. are.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have.
C. Johannesson CHARACTERISTICS OF GASES Gases expand to fill any container. random motion, no attraction Gases are fluids (like liquids). no attraction.
Ideal Gas Law Gases. C. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids).
I. Physical Properties (p. 399 – 402, ) Ch Gases Gases notes #1 - gas properties.ppt.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have mass but no definite volume. have elastic collisions.
V. Combined and Ideal Gas Law
Gases I. Physical Properties.
Ch. 10 – The Mole Molar Conversions.
Ch. 10 & 11 - Gases II. The Gas Laws (p ) P V T.
Gases.
I. Physical Properties (p )
Ch.12- Gases I. Physical Properties.
I. Physical Properties (p )
I. Physical Properties (p )
Gases I. Physical Properties.
Gas laws.
Ch Liquids & Solids III. Changes of State C. Johannesson.
The Gas Laws.
Gases Physical Properties.
Unit 8 Gas Laws!.
I. Physical Properties (p )
Ch. 10 & 11 - Gases II. The Gas Laws (p ) P V T.
Gases I. Physical Properties.
I. Physical Properties (p. 303 – 312 in school)
Gases I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as.
Ch. 10 & 11 - Gases II. The Gas Laws (p ) P V T C. Johannesson.
Ch Gases I. Physical Properties.
Chapter 1 Lesson 3 Mrs. Brock RJMS
Kinetic Molecular Theory
Ch. 10 & 11 - Gases II. The Gas Laws (p ) P V T.
Properties and Measuring Variables
The Gas Laws (p ) read the text first
II. The Gas Laws V T P Ch. 10 & 11 - Gases
Ch Gases I. Physical Properties.
Ch Gases I. Physical Properties.
Gases Physical Properties.
Turn in Work Book 14.1 and 14.2 Get out your notes packet.
Chapter 13 - Gases II. The Gas Laws P V T.
Gases 5.The Gas Laws P V T.
Chapter 7-1, 7-2.
Ch. 10 & 11 - Gases II. The Gas Laws (p ) P V T.
Ch. 10 & 11 - Gases II. The Gas Laws (p ) P V T C. Johannesson.
Gases and Laws – Unit 2 Version
Presentation transcript:

A. Kinetic Molecular Theory Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-line motion. don’t attract or repel each other. have an avg. KE directly related to Kelvin temperature. Visit for more Learning Resources

B. Real Gases Particles in a REAL gas… Gas behavior is most ideal… have their own volume attract each other Gas behavior is most ideal… at low pressures at high temperatures in nonpolar atoms/molecules

C. Characteristics of Gases Gases expand to fill any container. random motion, no attraction Gases are fluids (like liquids). no attraction Gases have very low densities. no volume = lots of empty space

C. Characteristics of Gases Gases can be compressed. no volume = lots of empty space Gases undergo diffusion & effusion. random motion

K = ºC + 273 D. Temperature ºF ºC K -459 32 212 -273 100 273 373 Always use absolute temperature (Kelvin) when working with gases. ºF ºC K -459 32 212 -273 100 273 373 K = ºC + 273

Standard Temperature & Pressure F. STP STP Standard Temperature & Pressure 0°C 273 K 1 atm 101.325 kPa -OR-

II. The Gas Laws BOYLES CHARLES GAY-LUSSAC P V T Ch. 12 - Gases

A. Boyle’s Law The pressure and volume of a gas are inversely related at constant mass & temp P V PV = k

B. Charles’ Law The volume and absolute temperature (K) of a gas are directly related at constant mass & pressure V T

C. Gay-Lussac’s Law The pressure and absolute temperature (K) of a gas are directly related at constant mass & volume P T

PV T V T P T PV = k P1V1 T1 = P2V2 T2 P1V1T2 = P2V2T1 D. Combined Gas Law PV T V T P T PV = k P1V1 T1 = P2V2 T2 P1V1T2 = P2V2T1

E. Gas Law Problems CHARLES’ LAW T V GIVEN: V1 = 473 cm3 A gas occupies 473 cm3 at 36°C. Find its volume at 94°C. CHARLES’ LAW GIVEN: V1 = 473 cm3 T1 = 36°C = 309K V2 = ? T2 = 94°C = 367K T V WORK: P1V1T2 = P2V2T1 (473 cm3)(367 K)=V2(309 K) V2 = 562 cm3

E. Gas Law Problems BOYLE’S LAW P V GIVEN: V1 = 100. mL A gas occupies 100. mL at 150. kPa. Find its volume at 200. kPa. BOYLE’S LAW GIVEN: V1 = 100. mL P1 = 150. kPa V2 = ? P2 = 200. kPa P V WORK: P1V1T2 = P2V2T1 (150.kPa)(100.mL)=(200.kPa)V2 V2 = 75.0 mL

E. Gas Law Problems COMBINED GAS LAW P T V V1 = 7.84 cm3 A gas occupies 7.84 cm3 at 71.8 kPa & 25°C. Find its volume at STP. COMBINED GAS LAW GIVEN: V1 = 7.84 cm3 P1 = 71.8 kPa T1 = 25°C = 298 K V2 = ? P2 = 101.325 kPa T2 = 273 K P T V WORK: P1V1T2 = P2V2T1 (71.8 kPa)(7.84 cm3)(273 K) =(101.325 kPa) V2 (298 K) V2 = 5.09 cm3

E. Gas Law Problems GAY-LUSSAC’S LAW P T GIVEN: P1 = 765 torr A gas’ pressure is 765 torr at 23°C. At what temperature will the pressure be 560. torr? GAY-LUSSAC’S LAW GIVEN: P1 = 765 torr T1 = 23°C = 296K P2 = 560. torr T2 = ? P T WORK: P1V1T2 = P2V2T1 (765 torr)T2 = (560. torr)(309K) T2 = 226 K = -47°C

UNIVERSAL GAS CONSTANT B. Ideal Gas Law PV nT PV T V n = k = R UNIVERSAL GAS CONSTANT R=0.0821 Latm/molK R=8.315 dm3kPa/molK

UNIVERSAL GAS CONSTANT B. Ideal Gas Law PV=nRT UNIVERSAL GAS CONSTANT R=0.0821 Latm/molK R=8.315 dm3kPa/molK

B. Ideal Gas Law IDEAL GAS LAW V = ? n = 85 g T = 25°C = 298 K Find the volume of 85 g of O2 at 25°C and 104.5 kPa. IDEAL GAS LAW GIVEN: V = ? n = 85 g T = 25°C = 298 K P = 104.5 kPa R = 8.315 dm3kPa/molK WORK: 85 g 1 mol = 2.7 mol 32.00 g = 2.7 mol PV = nRT (104.5)V=(2.7) (8.315) (298) kPa mol dm3kPa/molK K V = 64 dm3

For more detail contact us B. Ideal Gas Law Calculate the pressure in atmospheres of 0.412 mol of He at 16°C & occupying 3.25 L. IDEAL GAS LAW GIVEN: P = ? atm n = 0.412 mol T = 16°C = 289 K V = 3.25 L R = 0.0821Latm/molK WORK: PV = nRT P(3.25)=(0.412)(0.0821)(289) L mol Latm/molK K P = 3.01 atm For more detail contact us