Algebraic Property Testing:

Slides:



Advertisements
Similar presentations
Parikshit Gopalan Georgia Institute of Technology Atlanta, Georgia, USA.
Advertisements

December 2, 2009 IPAM: Invariance in Property Testing 1 Invariance in Property Testing Madhu Sudan Microsoft/MIT TexPoint fonts used in EMF. Read the TexPoint.
Russell Impagliazzo ( IAS & UCSD ) Ragesh Jaiswal ( Columbia U. ) Valentine Kabanets ( IAS & SFU ) Avi Wigderson ( IAS ) ( based on [IJKW08, IKW09] )
Approximate List- Decoding and Hardness Amplification Valentine Kabanets (SFU) joint work with Russell Impagliazzo and Ragesh Jaiswal (UCSD)
Of 22 August 29-30, 2011 Rabin ’80: APT 1 Invariance in Property Testing Madhu Sudan Microsoft Research TexPoint fonts used in EMF. Read the TexPoint manual.
Gillat Kol joint work with Ran Raz Locally Testable Codes Analogues to the Unique Games Conjecture Do Not Exist.
An Ω(n 1/3 ) Lower Bound for Bilinear Group Based Private Information Retrieval Alexander Razborov Sergey Yekhanin.
Locally Decodable Codes from Nice Subsets of Finite Fields and Prime Factors of Mersenne Numbers Kiran Kedlaya Sergey Yekhanin MIT Microsoft Research.
A UNIFIED FRAMEWORK FOR TESTING LINEAR-INVARIANT PROPERTIES ARNAB BHATTACHARYYA CSAIL, MIT (Joint work with ELENA GRIGORESCU and ASAF SHAPIRA)
Of 37 October 18, 2011 Invariance in Property Testing: Chicago 1 Invariance in Property Testing Madhu Sudan Microsoft Research TexPoint fonts used in EMF.
Of 39 February 22, 2012 Invariance in Property Testing: Yale 1 Invariance in Property Testing Madhu Sudan Microsoft Research TexPoint fonts used in EMF.
Kevin Matulef MIT Ryan O’Donnell CMU Ronitt Rubinfeld MIT Rocco Servedio Columbia.
Two Query PCP with Subconstant Error Dana Moshkovitz Princeton University and The Institute for Advanced Study Ran Raz The Weizmann Institute 1.
Probabilistically Checkable Proofs Madhu Sudan MIT CSAIL 09/23/20091Probabilistic Checking of Proofs TexPoint fonts used in EMF. Read the TexPoint manual.
Quantum locally-testable codes Dorit Aharonov Lior Eldar Hebrew University in Jerusalem.
Locally Testable Codes and Expanders Tali Kaufman Joint work with Irit Dinur.
Proclaiming Dictators and Juntas or Testing Boolean Formulae Michal Parnas Dana Ron Alex Samorodnitsky.
Sparse Random Linear Codes are Locally Decodable and Testable Tali Kaufman (MIT) Joint work with Madhu Sudan (MIT)
1 Robust PCPs of Proximity (Shorter PCPs, applications to Coding) Eli Ben-Sasson (Radcliffe) Oded Goldreich (Weizmann & Radcliffe) Prahladh Harsha (MIT)
Testing of Clustering Noga Alon, Seannie Dar Michal Parnas, Dana Ron.
Michael Bender - SUNY Stony Brook Dana Ron - Tel Aviv University Testing Acyclicity of Directed Graphs in Sublinear Time.
Testing Metric Properties Michal Parnas and Dana Ron.
On Proximity Oblivious Testing Oded Goldreich - Weizmann Institute of Science Dana Ron – Tel Aviv University.
On Testing Convexity and Submodularity Michal Parnas Dana Ron Ronitt Rubinfeld.
1 Algorithmic Aspects in Property Testing of Dense Graphs Oded Goldreich – Weizmann Institute Dana Ron - Tel-Aviv University.
Some 3CNF Properties are Hard to Test Eli Ben-Sasson Harvard & MIT Prahladh Harsha MIT Sofya Raskhodnikova MIT.
Of 29 12/09/2014 Invariance in Property 1 Two Decades of Property Testing Madhu Sudan Microsoft Research TexPoint fonts used in EMF. Read.
September 20, 2010 Invariance in Property Testing 1 Madhu Sudan Microsoft/MIT TexPoint fonts used in EMF. Read the TexPoint manual before you delete this.
Of 38 July 29, 2011 Invariance in Property Testing: EPFL 1 Invariance in Property Testing Madhu Sudan Microsoft Research TexPoint fonts used in EMF. Read.
March 20-24, 2010 Babai-Fest: Invariance in Property Testing 1 Invariance in Property Testing Madhu Sudan Microsoft/MIT TexPoint fonts used in EMF. Read.
Dana Moshkovitz, MIT Joint work with Subhash Khot, NYU.
January 8-10, 2010 ITCS: Invariance in Property Testing 1 Invariance in Property Testing Madhu Sudan Microsoft/MIT TexPoint fonts used in EMF. Read the.
Of 28 Probabilistically Checkable Proofs Madhu Sudan Microsoft Research June 11, 2015TIFR: Probabilistically Checkable Proofs1.
Correlation testing for affine invariant properties on Shachar Lovett Institute for Advanced Study Joint with Hamed Hatami (McGill)
Of 29 August 4, 2015SIAM AAG: Algebraic Codes and Invariance1 Algebraic Codes and Invariance Madhu Sudan Microsoft Research.
Succinct representation of codes with applications to testing Elena Grigorescu Tali Kaufman Madhu Sudan.
Polynomials Emanuele Viola Columbia University work partially done at IAS and Harvard University December 2007.
Probabilistically Checkable Proofs Madhu Sudan MIT CSAIL.
Of 40 May 23-28, 2011 Bertinoro: Testing Affine-Invariant Properties 1 Testing Affine-Invariant Properties Madhu Sudan Microsoft TexPoint fonts used in.
Of 29 April 8, 2016 Two Decades of Property Testing 1 Madhu Sudan Harvard TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
1 Tolerant Locally Testable Codes Atri Rudra Qualifying Evaluation Project Presentation Advisor: Venkatesan Guruswami.
Tali Kaufman (Bar-Ilan)
Cyclic Codes 1. Definition Linear:
Locality in Coding Theory II: LTCs
Dana Ron Tel Aviv University
Hans Bodlaender, Marek Cygan and Stefan Kratsch
On Testing Dynamic Environments
Sublinear-Time Error-Correction and Error-Detection
Locality in Coding Theory
Polynomial Norms Amir Ali Ahmadi (Princeton University) Georgina Hall
Sublinear-Time Error-Correction and Error-Detection
From dense to sparse and back again: On testing graph properties (and some properties of Oded)
Pseudorandom bits for polynomials
Local Decoding and Testing Polynomials over Grids
Algebraic Codes and Invariance
General Strong Polarization
Local Error-Detection and Error-correction
RS – Reed Solomon List Decoding.
Locally Decodable Codes from Lifting
Invariance in Property Testing
Beer Therapy Madhu Ralf Vote early, vote often
Algebraic Property Testing
Robust PCPs of Proximity (Shorter PCPs, applications to Coding)
On the effect of randomness on planted 3-coloring models
General Strong Polarization
Low-Degree Testing Madhu Sudan MSR Survey … based on many works
Locality in Coding Theory II: LTCs
Testing Affine-Invariant Properties
Every set in P is strongly testable under a suitable encoding
Zeev Dvir (Princeton) Shachar Lovett (IAS)
Presentation transcript:

Algebraic Property Testing: A Survey Madhu Sudan MIT April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing: Personal Perspective Madhu Sudan MIT April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing: Personal Perspective Madhu Sudan MIT April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS Distance: Definition: Notes: ± ( f ; g ) = P r x 2 D [ 6 ] F m i n ¼ ² · . F i s ( k ; ² ± ) - l o c a y t e b f 9 q u r T . 2 p w ¸ 1 ¡ j k - l o c a y t e s b i m p 9 ² ; ± > = O ( 1 ) n d r : A f 2 F w . April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS Brief History [Blum,Luby,Rubinfeld – S’90] Linearity + application to program testing [Babai,Fortnow,Lund – F’90] Multilinearity + application to PCPs (MIP). [Rubinfeld+S.] Low-degree testing + Formal Definition [Goldreich,Goldwasser,Ron] Graph property testing. Since then … many developments Graph properties Statistical properties More algebraic properties April 1, 2009 Algebraic Property Testing @ DIMACS

Specific Directions in Algebraic P.T. More Properties Low-degree (d < q) functions [RS] Moderate-degree (q < d < n) functions q=2: [AKKLR] General q: [KR, JPRZ] Long code/Dictator/Junta testing [PRS] BCH codes (Trace of low-deg. poly.) [KL] All nicely “invariant” properties [KS] Better Parameters (motivated by PCPs). #queries, high-error, amortized query complexity, reduced randomness. April 1, 2009 Algebraic Property Testing @ DIMACS

Contrast w. Combinatorial P.T. U n i v e r s f : D ! R g ( A l s o u a y ) R i ¯ e d F P r p t = L n b c . M u s t a c e p O k o r j w . h F F Algebraic Property = Code! (usually) April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS Goal of this talk Implications of linearity Constraints, Characterizations, LDPC structure One-sided error, Non-adaptive tests [BHR] Redundancy of Constraints Tensor Product Codes Symmetries of Code Testing affine-invariant codes Yields basic tests for all known algebraic codes (over small fields). April 1, 2009 Algebraic Property Testing @ DIMACS

Basic Implications of Linearity [BHR] Generic adaptive test = decision tree. f(i) 1 f(j) f(k) ² P i c k p a t h f o l w e d b y r n m g 2 F . 1 ² Q u e r y f a c o d i n g t p h . ² A c e p t i ® f o n a h s w m 2 F . ² Y i e l d s n o - a p t v r f F . April 1, 2009 Algebraic Property Testing @ DIMACS

Basic Implications of Linearity [BHR] Generic adaptive test = decision tree. f(i) 1 f(j) f(k) ² P i c k p a t h f o l w e d b y r n m g 2 F . 1 ² Q u e r y f a c o d i n g t p h . ² A c e p t i ® f o n a h s w m 2 F . ² Y i e l d s n o - a p t v r f F . April 1, 2009 Algebraic Property Testing @ DIMACS

Constraints, Characterizations ² S a y t e s q u r i 1 ; : k c p h f ( ) 2 V 6 = F ² ( i 1 ; : k V ) = C o n s t r a E v e y f 2 F ¯ . 1 D i1 i2 ik in V? 2 ² I f e v r y 6 2 F j c t d w . p o s i b h n a z Like LDPC Codes! April 1, 2009 Algebraic Property Testing @ DIMACS

Constraints, Characterizations ² S a y t e s q u r i 1 ; : k c p h f ( ) 2 V 6 = F ² ( i 1 ; : k V ) = C o n s t r a E v e y f 2 F ¯ . 1 D i1 i2 ik in V? 2 ² I f e v r y 6 2 F j c t d w . p o s i b h n a z Like LDPC Codes! April 1, 2009 Algebraic Property Testing @ DIMACS

Example: Linearity Testing [BLR] Constraints: Characterization: C x ; y = ( + V ) j 2 F n w h e r f a b g x in V? f i s l n e a r ® 8 x ; y C t ¯ d y x+y April 1, 2009 Algebraic Property Testing @ DIMACS

Insufficiency of local characterizations [Ben-Sasson, Harsha, Raskhodnikova] There exist families characterized by k-local constraints that are not o(|D|)-locally testable. Proof idea: Pick LDPC graph at random … (and analyze resulting property) F April 1, 2009 Algebraic Property Testing @ DIMACS

Why are characterizations insufficient? Constraints too minimal. Not redundant enough! Proved formally in [Ben-Sasson, Guruswami, Kaufman, S., Viderman] Constraints too asymmetric. Property must show some symmetry to be testable. Not a formal assertion … just intuitive. April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS Redundancy? E.g. Linearity Test: Standard LDPC analysis: What natural operations create redundant local constraints? Tensor Products! ¡ ­ ( D 2 ) c o n s t r a i d m ¡ D i m e n s o ( F ) ¼ f r c t a . R q u # < l w h d y ! April 1, 2009 Algebraic Property Testing @ DIMACS

Tensor Products of Codes! Redundancy? F £ G = f M a t r i c e s u h v y o w n F d l m G g S u p o s e F , G y t m a i c F i r s t ` e n f d m b y h . Free F d e t r m i n G d e t r m i n d e t r m i n w c , b y F a G ! April 1, 2009 Algebraic Property Testing @ DIMACS

Testability of tensor product codes? Natural test: Given Matrix M Test if random row in F Test if random column in G Claim: If F, G codes of constant (relative) distance; then if test accepts w.h.p. then M is close to codeword of F x G Yields O(√n) local test for codes of length n. Can we do better? Exploit local testability of F, G? April 1, 2009 Algebraic Property Testing @ DIMACS

Robust testability of tensors? Natural test (if F,G locally testable): Given Matrix M Run Local Test for F on random row Run Local Test for G on random column Suppose M close on most rows/columns to F, G. Does this imply M is close to F x G? Generalizes test for bivariate polynomials. True for F, G = class of low-degree polynomials. [BFLS, Arora+Safra, Polishchuk+Spielman]. General question raised by [Ben-Sasson+S.] [P. Valiant] Not true for every F, G ! [Dinur, S., Wigderson] True if F (or G) locally testable. Test that random row close to F Test that random column close to G April 1, 2009 Algebraic Property Testing @ DIMACS

Tensor Products and Local Testability Robust testability allows easy induction (essentially from [BFL, BFLS]; see also [Ben-Sasson+S.]) ² L e t F n = - f o l d s r . ² G i v e n f : D ! F N a t u r l s P c k d o m x - p y j 2 April 1, 2009 Algebraic Property Testing @ DIMACS

Robust testability of tensors (contd.) Unnatural test (for F x F x F): Given 3-d matrix M: Pick random 2-d submatrix. Verify it is close to F x F Theorem [BenSasson+S., based on Raz+Safra]: Distance to F x F x F proportional to average distance of random 2-d submatrix to F x F. [Meir]: “Linear-algebraic” construction of Locally Testable Codes (matching best known parameters) using this (and many other ingredients). April 1, 2009 Algebraic Property Testing @ DIMACS

Redundant Characterizations (contd.) Redundant constraints necessary for testing [BGKSV] How to get redundancy? Tensor Products Sufficient to get some local testability Invariances (Symmetries) Sufficient? Counting (See Tali’s talk)  April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS Testing by symmetries April 1, 2009 Algebraic Property Testing @ DIMACS

Invariance & Property testing Invariances (Automorphism groups): Hope: If Automorphism group is “large” (“nice”), then property is testable. F o r p e m u t a i n ¼ : D ! , s - v f 2 l ± . A u t ( F ) = f ¼ j i s - n v a r g o m p d e c . April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS Examples Majority: Graph Properties: Algebraic Properties: What symmetries do they have? ¡ A u t g r o p = S D ( f l ) . ¡ E a s y F c t : I f A’ u ( ) = S D h e n i p o l R ; 1 ² - b . ¡ A u t . g r o p i v e n b y a m f c s [ F N S , B l ] w h April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Properties & Invariances Automorphism groups? Question: Are Linear/Affine-Inv., Locally Characterized Props. Testable? ([Kaufman + S.]) D = F n , R ( L i e a r t y o w - d g M u l ) O r D = K ¶ F , R ( u a l - B C H ) ( K ; F ¯ n i t e l d s ) L i n e a r t s f o m d . ¼ ( x ) = A w h 2 F £ (Linear-Invariant) A ± n e t r a s f o m i d . ¼ ( x ) = + b w h 2 F £ ; (Affine-Inv.) April 1, 2009 Algebraic Property Testing @ DIMACS

Linear-Invariance & Testability Unifies previous studies on Alg. Prop. Testing. (And captures some new properties) Nice family of 2-transitive group of symmetries. Conjecture [Alon, Kaufman, Krivelevich, Litsyn, Ron] : Linear code with k-local constraint and 2-transitive group of symmetries must be testable. April 1, 2009 Algebraic Property Testing @ DIMACS

Some Results [Kaufman + S.] Theorem 1: Theorem 2: F µ f K n ! g l i e a r , - v t k o c y h z d m p s ( ; ) b . F µ f K n ! g l i e a r , ± - v t h s k o c m p ( ; ) y b . April 1, 2009 Algebraic Property Testing @ DIMACS

Examples of Linear-Invariant Families ¡ L i n e a r f u c t o s m F . ¡ P o l y n m i a s F [ x 1 ; : ] f d e g r t ¡ T r a c e s o f P l y i n K [ x 1 ; : ] d g t m ¡ ( T r a c e s o f ) H m g n u p l y i d ¡ F 1 + 2 , w h e r a l i n - v t . P o y m s u p d b g ; 3 5 7 April 1, 2009 Algebraic Property Testing @ DIMACS

What Dictates Locality of Characterizations? ¡ P r e c i s l o a t y n u d : D p - f g . E x m F b + j h v k w ¡ F o r a ± n e - i v t f m l y d c ( s ) b h g ¡ F o r s m e l i n a - v t f , c b u h g d . E x a m p l e : K = F 7 ; 1 + 2 o y f d g r t s 6 u n i 3 . D ( ) ­ L c · 4 9 April 1, 2009 Algebraic Property Testing @ DIMACS

Property Testing from Invariances April 1, 2009 Algebraic Property Testing @ DIMACS

Key Notion: Formal Characterization ¡ F h a s i n g l e - o r b t c z f 9 C = ( x 1 ; : k V ) u ± ¼ 2 A . T h e o r m : I f F a s i n g l - b t c z y k ( w ) . Rest of talk: Analysis (extending BLR) April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS BLR Analysis: Outline ² H a v e f s . t P r x ; y [ ( ) + 6 = ] ± < 1 2 W n o h w c l m g F ² D e ¯ n g ( x ) = m o s t l i k y f + ¡ . ² I f c l o s e t F h n g w i b a d . ² B u t i f n o c l s e ? g m a y v b q d ¯ ! ² S t e p s : ¡ S t e p : P r o v f c l s g ¡ S t e p 1 : P r o v m s l i k y w h n g a j . ¡ S t e p 2 : P r o v h a g i s n F . April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS BLR Analysis: Step 0 ² D e ¯ n g ( x ) = m o s t l i k y f + ¡ . C l a i m : P r x [ f ( ) 6 = g ] · 2 ± ¡ L e t B = f x j P r y [ ( ) 6 + ] ¸ 1 2 g ¡ P r x ; y [ l i n e a t s j c 2 B ] ¸ 1 ) P r x [ 2 B ] · ± ¡ I f x 6 2 B t h e n ( ) = g April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS V o t e x ( y ) BLR Analysis: Step 1 ² D e ¯ n g ( x ) = m o s t l i k y f + ¡ . ² S u p o s e f r m x , 9 t w q a l y i k v . P b n d h c ? ² I f w e i s h t o g l n a r , d u c . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] · 4 ± April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS V o t e x ( y ) BLR Analysis: Step 1 ² D e ¯ n g ( x ) = m o s t l i k y f + ¡ . ² S u p o s e f r m x , 9 t w q a l y i k v . P b n d h c ? ² I f w e i s h t o g l n a r , d u c . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] · 4 ± April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS BLR Analysis: Step 1 V o t e x ( y ) ² D e ¯ n g ( x ) = m o s t l i k y f + ¡ . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] · 4 ± f ( y ) ¡ f ( x + y ) ? f ( z ) f ( y + z ) ¡ f ( y + 2 z ) ¡ f ( x + z ) ¡ f ( 2 y + z ) f ( x + 2 y z ) P r o b . R w / c l u m n s - z e · ± April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS BLR Analysis: Step 1 V o t e x ( y ) ² D e ¯ n g ( x ) = m o s t l i k y f + ¡ . L e m a : 8 x , P r y ; z [ V o t ( ) 6 = ] · 4 ± f ( y ) ¡ f ( x + y ) ? f ( z ) f ( y + z ) ¡ f ( y + 2 z ) ¡ f ( x + z ) ¡ f ( 2 y + z ) f ( x + 2 y z ) P r o b . R w / c l u m n s - z e · ± April 1, 2009 Algebraic Property Testing @ DIMACS

BLR Analysis: Step 2 (Similar) f ± < 1 2 , t h n 8 x ; y g ( ) + = P r o b . R w / c l u m n s - z e · 4 ± g ( x ) g ( y ) ¡ g ( x + y ) f ( z ) f ( y + z ) ¡ f ( y + 2 z ) ¡ f ( x + z ) ¡ f ( 2 y + z ) f ( x + 2 y z ) April 1, 2009 Algebraic Property Testing @ DIMACS

Our Analysis: Outline ² f s . t P r [ h ( x ) ; : i 2 V ] = ± ¿ ² D e 1 ) ; : k i 2 V ] = ± ¿ ² D e ¯ n g ( x ) = ® t h a m i z s P r f L j 1 [ ; 2 : k V ] ² S t e p s : ¡ S t e p : P r o v f c l s g Step 1: Prove “most likely” is overwhelming majority. ¡ ¡ S t e p 2 : P r o v h a g i s n F . April 1, 2009 Algebraic Property Testing @ DIMACS

Our Analysis: Outline ² f s . t P r [ h ( x ) ; : i 2 V ] = ± ¿ ² D e 1 ) ; : k i 2 V ] = ± ¿ ² D e ¯ n g ( x ) = ® t h a m i z s P r f L j 1 [ ; 2 : k V ] S a m e s b f o r ² S t e p s : ¡ S t e p : P r o v f c l s g Step 1: Prove “most likely” is overwhelming majority. ¡ ¡ S t e p 2 : P r o v h a g i s n F . April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS V o t e x ( L ) Matrix Magic? ² D e ¯ n g ( x ) = ® t h a m i z s P r f L j 1 [ ; 2 : k V ] L e m a : 8 x , P r ; K [ V o t ( ) 6 = ] · 2 k ¡ 1 ± L ( x 2 ) L ( x k ) ¢ x K ( x 2 ) ? . K ( x k ) April 1, 2009 Algebraic Property Testing @ DIMACS

? Matrix Magic? L ( x ) ¢ L ( x ) x K ( x ) . K ( x ) ² W a n t m r k 2 ) ¢ L ( x k ) x K ( x 2 ) ? . K ( x k ) ² W a n t m r k e d o w s b c i . ² S u p o s e x 1 ; : ` l i n a r y d t h m .

Matrix Magic? ` L ( x ) ¢ L ( x ) x K ( x ) ` . K ( x ) ² S u p o s e Fill with random entries Matrix Magic? Fill so as to form constraints Tensor magic implies final columns are also constraints. ` L ( x 2 ) ¢ L ( x k ) x K ( x 2 ) ` . K ( x k ) ² S u p o s e x 1 ; : ` l i n a r y d t h m . April 1, 2009

Matrix Magic? ` L ( x ) ¢ L ( x ) x K ( x ) ` . K ( x ) ² S u p o s e Fill with random entries Matrix Magic? Fill so as to form constraints Tensor magic implies final columns are also constraints! ` L ( x 2 ) ¢ L ( x k ) x K ( x 2 ) ` . K ( x k ) ² S u p o s e x 1 ; : ` l i n a r y d t h m . April 1, 2009

Algebraic Property Testing @ DIMACS Summarizing Affine invariance + single-orbit characterizations imply testing. Unifies analysis of linearity test, basic low-degree tests, moderate-degree test (all A.P.T. except dual-BCH?) April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS Concluding thoughts - 1 Didn’t get to talk about PCPs, LTCs (though we did implicitly) Optimizing parameters Parameters In general Broad reasons why property testing works worth examining. Tensoring explains a few algebraic examples. Invariance explains many other algebraic ones. (More about invariances in [Grigorescu,Kaufman,S. ’08], [GKS’09]) April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS Concluding thoughts - 2 Invariance: Seems to be a nice lens to view all property testing results (combinatorial, statistical, algebraic). Many open questions: What groups of symmetries aid testing? What additional properties needed? Local constraints? Linearity? Does sufficient symmetry imply testability? Give an example of a non-testable property with a k-single orbit characterization. April 1, 2009 Algebraic Property Testing @ DIMACS

Algebraic Property Testing @ DIMACS Thank You! April 1, 2009 Algebraic Property Testing @ DIMACS