PROBING the MYSTERY: THEORY & EXPERIMENT in QUANTUM GRAVITY

Slides:



Advertisements
Similar presentations
Stefan Hild for the GEO600 team October 2007 LSC-Virgo meeting Hannover Homodyne readout of an interferometer with Signal Recycling.
Advertisements

Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Comparison of LISA and Atom Interferometry for Gravitational Wave Astronomy in Space Peter L. Bender JILA, University of Colorado and NIST 46 th RENCONTRES.
1 Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Universal matter-wave interferometry from microscopic to macroscopic
Towards a Laser System for Atom Interferometry Andrew Chew.
Laser System for Atom Interferometry Andrew Chew.
Measurements using Atom Free Fall
Prospects for gravitational wave detection with atom interferometry
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Generation of short pulses
Gravitational Physics using Atom Interferometry
Optical Coherence Tomography Zhongping Chen, Ph.D. Optical imaging in turbid media Coherence and interferometry Optical coherence.
Wave Physics PHYS 2023 Tim Freegarde. 2 2 Beating TWO DIFFERENT FREQUENCIES.
Laser System for Atom Interferometry Andrew Chew.
Jason Hogan May 22, 2014 LISA Symposium X Single-arm gravitational wave detectors based on atom interferometry.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
1 Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Introduction to HYPER Measuring Lense-Thirring with Atom Interferometry P. BOUYER Laboratoire Charles Fabry de l’Institut d’Optique Orsay, France.
Lecture 3 Atom Interferometry: from navigation to cosmology Les Houches, 26 Sept E.A. Hinds Centre for Cold Matter Imperial College London.
Atom Interferometry Prof. Mark Kasevich
Interferometer in Space for Detecting Gravity Wave Radiation using Lasers (InSpRL) Dec Workshop on Gravity Wave Detection Presenter: Babak. N.
Experimental tests of the weak equivalence principle Susannah Dickerson, Kasevich Group, Stanford University 2 nd International Workshop on Antimatter.
08/31/2006 ~ Mission specific challenges: Data Analysis GRS Interferometry.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Atom Interferometry Prof. Mark Kasevich
Gravitational Physics using Atom Interferometry Prof. Mark Kasevich Dept. of Physics and Applied Physics Stanford University, Stanford CA.
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
18/04/2004New Windows on the Universe Jan Kuijpers Part 1: Gravitation & relativityPart 1: Gravitation & relativity J.A. Peacock, Cosmological Physics,
Relativistic Quantum Theory of Microwave and Optical Atomic Clocks
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
Comparison of Laser Interferometry and Atom Interferometry for Gravitational Wave Observations in Space Peter L. Bender JILA, University of Colorado Boulder.
DECIGO – Japanese Space Gravitational Wave Detector International Workshop on GPS Meteorology January 17, Tsukuba Center for Institutes Seiji Kawamura*
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) 7th Gravitational Wave Data Analysis Workshop December 17, International Institute.
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Space Gravitational Wave Antenna DECIGO Project 3rd TAMA Symposium February 7, Institute for Cosmic Ray Research, Japan Seiji Kawamura National.
Atom-interferometry constraints on dark energy Philipp Haslinger Müller group University of California Berkeley.
ET-ILIAS_GWA joint meeting, Nov Henning Rehbein Detuned signal-recycling interferometer unstableresonance worsesensitivity enhancedsensitivity.
Mike Cruise University of Birmingham Searches for very high frequency gravitational waves.
Testing the quantum superposition principle 1. One motivation: Test Collapse models Collapse models: CSL, GRW, Diosi-Penrose, … Also non-collapse Models:
LISA Laser Interferometer Space Antenna: The Mission Mike Cruise For the LISA Team.
qBOUNCE: a quantum bouncing ball gravity spectrometer
The search for those elusive gravitational waves
Fluctuation properties of chaotic light
Interferometer configurations for Gravitational Wave Detectors
Current and future ground-based gravitational-wave detectors
The Search for Gravitational Waves with Advanced LIGO
Measurement Science Science et étalons
Generation of squeezed states using radiation pressure effects
Nan Yu Jet Propulsion Laboratory California Institute of Technology
Gravitational Quantum States of Antihydrogen
Homodyne readout of an interferometer with Signal Recycling
Heterodyne Readout for Advanced LIGO
Homodyne or heterodyne Readout for Advanced LIGO?
Bi-plasma interactions on femtosecond time-scales
Advanced LIGO Quantum noise everywhere
Quantum Optics and Macroscopic Quantum Measurement
Heterodyne Readout for Advanced LIGO
Atom Optics for Gravitational Wave Detection
Observational Astronomy
Gravitational Wave Detection and Dark Matter Searches with Atom Interferometry Tim Kovachy Department of Physics and Astronomy and Center for Fundamental.
Squeezed Light Techniques for Gravitational Wave Detection
RF readout scheme to overcome the SQL
Advanced Optical Sensing
by Yang Wang, Aishwarya Kumar, Tsung-Yao Wu, and David S. Weiss
Presentation transcript:

PROBING the MYSTERY: THEORY & EXPERIMENT in QUANTUM GRAVITY Tests of gravity and the quantum superposition principle using atom interferometry PROBING the MYSTERY: THEORY & EXPERIMENT in QUANTUM GRAVITY Galiano Island Jason Hogan Stanford University August 19, 2015

Quantum superposition at the meter scale 54 cm Image of the wavepackets in an LMT interferometer with record 54 cm wavepacket separation. Visualization of the wavefunction

Atom interference Light interferometer Atom interferometer Light fringes Atom interferometer Beamsplitter Atom fringes Atom Beamsplitter Mirror http://scienceblogs.com/principles/2013/10/22/quantum-erasure/ http://www.cobolt.se/interferometry.html

Light Pulse Atom Interferometry Long duration Large wavepacket separation

10 meter scale atomic fountain < 3 nK

Interference at long interrogation time Port 1 Port 2 Wavepacket separation at apex (this data 50 nK) 2T = 2.3 sec; Near full contrast 6.7×10-12 g/shot (inferred) Demonstrated statistical resolution: ~5 ×10-13 g in 1 hr (87Rb) Interference (3 nK cloud) Dickerson, et al., PRL 111, 083001 (2013).

Phase shear readout Phase Shear Readout (PSR) F = 2 (pushed) F = 1 g 1 cm 1 cm ≈ 4 mm/s Single-shot interferometer phase measurement Purposefully misalign interferometer (tilt last pulse) Introduces phase shear: fringes Differential phase across cloud is stable

Phase shear readout Phase Shear Readout (PSR) F = 2 (pushed) F = 1 g 1 cm 1 cm ≈ 4 mm/s Single-shot interferometer phase measurement Purposefully misalign interferometer (tilt last pulse) Introduces phase shear: fringes Differential phase across cloud is stable

Phase shear readout Phase Shear Readout (PSR) F = 2 (pushed) F = 1 g 1 cm 1 cm ≈ 4 mm/s Single-shot interferometer phase measurement Purposefully misalign interferometer (tilt last pulse) Introduces phase shear: fringes Differential phase across cloud is stable

Phase shear readout Phase Shear Readout (PSR) F = 2 (pushed) F = 1 g 1 cm 1 cm ≈ 4 mm/s Single-shot interferometer phase measurement Purposefully misalign interferometer (tilt last pulse) Introduces phase shear: fringes Differential phase across cloud is stable

LMT sequence details Sequential π-pulses (2ħk) applied to one arm after initial beamsplitter Bragg atom optics (fixed internal state) Gaussian π-pulses 60 µs FWHM 30 GHz detuning

Wavepacket separation 54 cm Stitched image (36 images)

Wavepacket separation . . . 54 cm Stitched image (36 images)

Wavepacket separation . . . 90 ħk . . . 54 cm Stitched image (36 images)

Interferometer ports 2 ħk 90 ħk Interference causes population modulation between the ports

Phase shear from time asymmetry Delay last pulse + δT Phase from Doppler shift Vertical shear due to asymmetric pulse spacing: 2 ħk data -240 µs -160 µs 0 µs 160 µs 240 µs Müntinga et al., PRL 2013 Sugarbaker, et al., PRL 2013

Contrast Envelope Fringes from time asymmetry will reduce contrast if not resolved Measured contrast envelopes: Interferometer time asymmetry Modulation depth 30 ħk 60 ħk 90 ħk Equivalently: 8*10^9 rad/g for 90 hk Coherence length (Manuscript submitted)

Contrast vs LMT order High contrast out to 90 ħk Photon recoils (ħk) 54 cm High contrast out to 90 ħk All data using 2T = 2.08 s Amplitude fluctuations not caused by interference 8*10^9 rad/g for 90 hk (Manuscript submitted)

Spatial interference fringes Time asymmetry: “Cosine” “Sine” 30 ħk Port 1 Fitted wavelength agrees with theory Port 2 Principal component analysis Complementary way to observer contrast. Fringe wavelength is determined by dT and n, matches theory. H. Müntinga et al., Phys. Rev. Lett. 110, 093602 (2013). S. Dickerson et al., Phys. Rev. Lett. 111, 083001 (2013).

Comparison of matter wave interferometers Cesium 2012: S.Y. Lan et. al., PRL 108, 090402 (2012). PFNS8 Molecules 2011:  S. Gerlich et. al., Nature Communications 2, 263 (2011). Cesium 2009:  K. Y. Chung et. al., PRD 80, 016002 (2009). C70 Molecules 2002:  B. Brezger et. al., PRL 88, 100404 (2002). Neutrons 2001:  M. Zawisky et. al., Nuc. Instr. and Meth. in Phys. Research A 481, 406-413 (2002). Cesium 2001:  A. Peters, K. Y. Chung, and S. Chu, Metrologia 38, 25 (2001). Sodium 1992:  M. Kasevich and S. Chu, Appl. Phys. B 54, 3210332 (1992).

Bounds for modifications of quantum mechanics Nimmrichter and Hornberger (PRL 2013) “Macroscopicity” “Minimal modification of quantum mechanics … to classicalize” Predicts decay of quantum superposition above some critical length scale, time. Cesium 2012: S.Y. Lan et. al., PRL 108, 090402 (2012). PFNS8 Molecules 2011:  S. Gerlich et. al., Nature Communications 2, 263 (2011). Cesium 2009:  K. Y. Chung et. al., PRD 80, 016002 (2009). C_70 Molecules 2002:  B. Brezger et. al., PRL 88, 100404 (2002). Neutrons 2001:  M. Zawisky et. al., Nuclear Instruments and Methods in Physics Research A 481, 406-413 (2002). Cesium 2001:  A. Peters, K. Y. Chung, and S. Chu, Metrologia 38, 25 (2001). Sodium 1992:  M. Kasevich and S. Chu, Appl. Phys. B 54, 3210332 (1992).

General relativistic phase shifts Light-pulse interferometer phase shifts in GR: Geodesic propagation for atoms and light. Path integral formulation to obtain quantum phases. Atom-field interaction at intersection of laser and atom geodesics. atom laser Atom and photon geodesics Prior work, de Broglie interferometry: Post-Newtonian effects of gravity on quantum interferometry, Shigeru Wajima, Masumi Kasai, Toshifumi Futamase, Phys. Rev. D, 55, 1997; Bordé, et al.

General Relativity Effects Schwarzschild metric, PPN expansion: Newtonian Gravity Gravity Gravitates Kinetic Energy Gravitates Corresponding AI phase shifts: Projected experimental limits: (Dimopoulos, et al., PRL 2007; PRD 2008)

Gravitational Wave Detection Why study gravitational waves? New carrier for astronomy Extreme tests of gravity Early universe cosmology Why consider atoms? Neutral atoms are excellent proof masses Atom interferometry to measure geodesic Atoms are excellent clocks

Satellite GW Antenna Common interferometer laser 100 km – 1000 km Atoms Atoms 100 km – 1000 km JMAPS bus/ESPA deployed

Single photon atom interferometry Single photon gradiometer Example LMT beamsplitter (N = 3) AI with single photon transitions: Laser noise suppression using a single baseline LMT using pulses from alternating directions Candidate transition

Potential Strain Sensitivity J. Hogan, et al., GRG 43, 7 (2011).

Heterodyne laser link for long baselines Measure heterodyne beat between incoming reference laser and local oscillator laser. LO is phase locked to reference, so laser noise is still common between the two AIs. Insensitive to motion of beam splitter LO has high intensity for driving transitions M1, M1: Master lasers LO1, LO2: Local oscillator lasers R1, R2: Reference beams BS: Beam splitter TTM: Tip-tilt mirror J. Hogan and M. Kasevich, arXiv:1501.06797 (2015)

Long baseline strain sensitivity Averaged over GW direction and polarization Sr atoms LISA-like sensitivity with conservative 2ħk design 10x better than LISA with LMT New tool for optimizing detector design J. Hogan and M. Kasevich, arXiv:1501.06797 (2015)

Collaborators Stanford NASA GSFC AOSense Support: Mark Kasevich Tim Kovachy Christine Donnelly Chris Overstreet Peter Asenbaum Theory: Peter Graham Savas Dimopoulos Surjeet Rajendran Former members: Susannah Dickerson Alex Sugarbaker David Johnson Sheng-wey Chiow Visitors: Philippe Bouyer (CNRS) Jan Rudolph (Hannover) NASA GSFC Babak Saif Bernard D. Seery Lee Feinberg Ritva Keski-Kuha AOSense Brent Young (CEO) Support:

Example Interference Data

AC Stark shift compensation Intensity ripples change with height (diffraction): 30 ħk Fractional contrast AC Stark shift difference for large wavepacket separation Height (Rabi frequency fixed) Atom optics laser Effective sideband asymmetry Atom optics Absolute Stark shift compensation F=2 F=1