Status on CMOS Sensors: 2005 outcome A. Besson, on behalf of IPHC/IReS Strasbourg DAPNIA Saclay (M8, M15) LPSC Grenoble (ADC) LPC Clermont (ADC) Univ.

Slides:



Advertisements
Similar presentations
Wojciech Dulinski Réunion Capteurs CMOS, Wojtek Dulinski, Samir Amar-Youcef, Michael Deveaux, Mathieu Goffe.
Advertisements

Konstantin Stefanov, Rutherford Appleton Laboratory4 th ECFA-DESY Workshop, 1-4 April 2003p. 1 CCD-based Vertex Detector - LCFI status report Konstantin.
January US LC Workshop SLAC – Chris Damerell 1 Strategies for pickup and noise suppression with different vertex detector technologies Chris Damerell.
LCFI Collaboration Status Report LCWS 2004 Paris Joel Goldstein for the LCFI Collaboration Bristol, Lancaster, Liverpool, Oxford, RAL.
Kailua-Kona, Marcel Trimpl, Bonn University Readout Concept for Future Pixel Detectors based on Current Mode Signal Processing Marcel Trimpl.
1 Annealing studies of Mimosa19 & radiation hardness studies of Mimosa26 Dennis Doering* 1, Samir Amar-Youcef 1,3,Michael Deveaux 1, Melissa Domachowski.
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
6 th International Conference on Position Sensitive Detectors, Leicester 11/09/2002 Yu.Gornushkin Outline: G. Claus, C.
Monolithic Active Pixel Sensors M. Deveaux, Goethe University Frankfurt and CBM on behalf of the PICSEL group IPHC Strasbourg (Marc Winter et al.). (CPS.
Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration.
EUDET Annual Meeting, Munich, October EUDET Beam Telescope: status of sensor’s PCBs Wojciech Dulinski on behalf.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
STAR Microvertex Upgrade Meeting, Strasbourg, April Status of sensors from the engineering run AMS-035 OPTO Wojciech.
15-17 December 2003ACFA workshop, Mumbai - A.Besson R&D on CMOS sensors Development of large CMOS Sensors Characterization of the technology without epitaxy.
Wojciech Dulinski Mimosa-18 (High Resolution Tracker) IPHC, 23 rue du Loess BP 28, 67037, Strasbourg Cedex 02, France Mini.
The MAPS sensor (reminder) MAPS with integrated data sparsification
1 Improved Non-Ionizing Radiation Tolerance of CMOS Sensors Dennis Doering 1 *, Michael Deveaux 1, Melissa Domachowski 1, Michal Koziel 1, Christian Müntz.
November 2003ECFA-Montpellier 1 Status on CMOS sensors Auguste Besson on behalf of IRES/LEPSI: M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
ULTIMATE Design Review Outline  STAR Pixel Sensor Evolution  MIMOSA-26 Design  ULTIMATE Design & Optimisation  Pixel, Discriminator, Auxilliary Functional.
Status of the R&D on MAPS in Strasbourg and Frankfurt Outline: Operation principle of MAPS (a reminder) Fast readout Radiation hardness System integration.
Radiation tolerance of Monolithic Active Pixel Sensors (MAPS) Outline: Operation principle of MAPS Radiation tolerance against ionising doses (update)
Irfu saclay 3D-MAPS Design IPHC / IRFU collaboration Christine Hu-Guo (IPHC) Outline  3D-MAPS advantages  Why using high resistivity substrate  3 types.
Development of CMOS Pixel sensors (CPS) for vertex detectors in present and future collider experiments On behalf of IPHC-Strasbourg group (CNRS & Université.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
1 PIXEL H. Wieman HFT CDO LBNL Feb topics  Pixel specifications and parameters  Pixel silicon  Pixel Readout uSTAR telescope tests 
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
High-resolution, fast and radiation-hard silicon tracking station CBM collaboration meeting March 2005 STS working group.
Leo Greiner TC_Int1 Sensor and Readout Status of the PIXEL Detector.
1 Radiation damage effects in Monolithic Active Pixel Sensors Implemented in an 0.18µm CMOS process Dennis Doering, Goethe-University Frankfurt am Main.
Vienna Conference on Instrumentation, February Development of CMOS Sensors for Future High Precision Position Sensitive.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
ALICE Inner Tracking System at present 2 2 layers of hybrid pixels (SPD) 2 layers of silicon drift detector (SDD) 2 layers of silicon strips (SSD) MAPs.
IPHC-LBNL meeting 3-5 April 2008 Radiation damage in the STAR environment and performance of MAPS sensors Compilation of different test results mostly.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
CEA DSM Irfu 20 th october 2008 EuDet Annual Meeting Marie GELIN on behalf of IRFU – Saclay and IPHC - Strasbourg Zero Suppressed Digital Chip sensor for.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  MAPS technology decoupled charge sensing and signal transfer (improved radiation.
Monolithic Active Pixel Sensors (MAPS) News from the MIMOSA serie Pierre Lutz (Saclay)
Test of the MAPS add-on board S. Amar-Youcef, M. Deveaux, D. Doering, C. Müntz, S. Seddiki, P. Scharrer, Ch. Schrader, J. Stroth, T. Tischler.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 2 Paul Dauncey Imperial College London.
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
A Fast Monolithic Active Pixel Sensor with in Pixel level Reset Noise Suppression and Binary Outputs for Charged Particle Detection Y.Degerli 1 (Member,
Vertex 2008 July 28–August 1, 2008, Utö Island, Sweden CMOS pixel vertex detector at STAR Michal Szelezniak on behalf of: LBNL: E. Anderssen, L. Greiner,
Improvement of ULTIMATE IPHC-LBNL September 2011 meeting, Strasbourg Outline  Summary of Ultimate test status  Improvement weak points in design.
COMETH*: a CMOS pixel sensor for a highly miniaturized high-flux radiation monitor Yang ZHOU, Jérôme Baudot, Christine Hu-Guo, Yann Hu, Kimmo Jaaskelainen,
A. Dorokhov, IPHC, Strasbourg, France 1 Description of pixel designs in Mimosa22 Andrei Dorokhov Institut Pluridisciplinaire Hubert Curien (IPHC) Strasbourg,
ULTIMATE: a High Resolution CMOS Pixel Sensor for the STAR Vertex Detector Upgrade Christine Hu-Guo on behalf of the IPHC (Strasbourg) CMOS Sensors group.
Mistral Christine Hu-Guo on behalf of the IPHC (Strasbourg) PICSEL team Outline  MISTRAL (inner layers)  Circuit proposal  Work plan  Sensor variant.
MIMO  3 Preliminary Test Results. MIMOSTAR 2 16/05/2007 MimoStar3 Status Evaluation of MimoStar2 chip  Test in Laboratory.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
MISTRAL & ASTRAL: Two CMOS Pixel Sensor Architectures dedicated to the Inner Tracking System of the ALICE Experiment R&D strategy with two main streams.
STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 1 Improved radiation tolerance of MAPS using a depleted epitaxial layer.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Fast Full Scale Sensors Development IPHC - IRFU collaboration MIMOSA-26, EUDET beam telescope Ultimate, STAR PIXEL detector Journées VLSI 2010 Isabelle.
Irfu saclay CMOS Pixel Sensor Development: A Fast Readout Architecture with Integrated Zero Suppression Christine HU-GUO on behalf of the IRFU and IPHC.
1 PIXEL H. Wieman HFT CDO LBNL Feb topics  Pixel specifications and parameters  Pixel silicon  Pixel Readout uSTAR telescope tests 
Further improvement of the TC performances Marie GELIN on behalf of IPHC - Strasbourg and IRFU – Saclay Investigation of a new substrate (High Resistivity)
ECFA Durham, September Recent progress on MIMOSA sensors A.Besson, on behalf of IReS/LEPSI : M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
M.Winter, on behalf of IPHC (ex-IReS) Strasbourg
CMOS pixel sensors & PLUME operation principles
First Testbeam results
Radiation tolerance of MAPS
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
Mimosa18 on PCB (from the chip side)
R&D of CMOS pixel Shandong University
Presentation transcript:

Status on CMOS Sensors: 2005 outcome A. Besson, on behalf of IPHC/IReS Strasbourg DAPNIA Saclay (M8, M15) LPSC Grenoble (ADC) LPC Clermont (ADC) Univ. Frankfurt (M11) Fast integrated signal processing room Temp. Thinning Exploration of fabrication processes Delayed signal processing EUDET SOCLE, Lyon, janvier 2006

Socle, Lyon, janvier 2006Auguste Besson2 Specific aspects of the CMOS VD concept Overall design a priori very similar to TESLA TDR concept (CCD): Basic characteristics: Main R&D effort 5 cylindrical layers R = 15 – 60 mm surface ~ 3000 cm 2 sensor thickness ~ m total number of pixels ~ 300 millions P mean ~ 25 W (full detector; 1/20 duty cycle) operated T > 5 o ? pixels ADC, sparsification support LayerPitcht r.o. N lad N pix P inst diss P mean dis L1 20 m25 s 2025M< 100 W< 5 W L2 25 m50 s 2665M< 130 W< 7 W L3 30 m200 s 2475M< 100 W< 5 W L4 35 m200 s 3270M< 110 W< 6 W L5 40 m200 s 4070M< 125 W< 6 W total142305M< 565 W<29 W concentrated on achieving fast CMOS sensors: signal processing (sparsification) integrated/chip

Socle, Lyon, janvier 2006Auguste Besson3 Status of the main R&D directions Status of the main R&D directions Fast read-out in L1/L2 with // processing of columns –Mimosa 8 (with Saclay) characterized in test beam. –Mimosa 15 (M8 pixel in AMS 0.35 opto) tested in lab. Multi-memory architecture (FAPS) in L3-L5 –Mimosa 12 tested in lab. Radiation hardness (Ionising high TºC –Mimosa 11 characterized in test beam. irradiated with 10 keV X-Rays up to 1 MRad. other on going activities –Fabrication processes –ADC –Thinning –Mimostar-2

// read-out architecture

Socle, Lyon, janvier 2006Auguste Besson5 // read-out architecture: Mimosa 8 Mimosa 8: Test in lab: 55 Fe results –Pixel noise ~ 15 e- –CDS ending each col. Pixel-to-pixel dispersion ~ 8 e- Test beam results (DESY, 5GeV e-) –Analog part Charge ~ 450 e- thin epi layer Typical noise ~ e- S/N (MPV) ~ –Digital part The discriminator works as expected: efficiency / purity / multiplicity Next step: ADC, rad. hardness, AMS 0.35 OPTO, speed - TSMC 0.25 m fab. process with ~ 8 m epitaxial layer - Pixel pitch: 25 m - 3 sub matrices with 3 diode surfaces x 1.2 μm x 1.7 μm x 2.4 μm // columns of 128 pixels with 1 discriminator per column - 8 analogic columns

Socle, Lyon, janvier 2006Auguste Besson6 M8 digital : Efficiency and fake rate Temp. = 20 o C; r.o. = 40 MHz S/N(seed) cut > 5.5 ( discri. threshold =5 mV) Contamination ~< 5 x Fake Hit rate / pixel / event First sensor with integrated signal digitisation ! Architecture to be extended with ADC for EUDET telescope Average hit multiplicity (num of pixels in cluster) Efficiency (%)

Socle, Lyon, janvier 2006Auguste Besson7 Mimosa 15: translation in AMS 0.35 opto TSMC – 0.25 technology < 7 μm epitaxial layer thickness: signal ~ 450 e- while AMS-0.35 opto techno ~< 12 μm thickness: signal ~ e- Translate Mimosa 8 in AMS-0.35 opto techno. First step: Mimosa 15 (fab. in Summer 2005) Pixel with integrated CDS design of Mimosa 8 2 diode sizes: 1.7 x 1.7 μm 2 & 2.4 x 2.4 μm 2 Lab. tests in December-January

Socle, Lyon, janvier 2006Auguste Besson8 Mimosa 15: tests with 55 Fe source 2.4 x 2.4 μm 2 diode: –Gain ~ 50 μV/e - –Q seed ~ 10% of Q tot (instead of ~ 25%) –Q 3x3 ~ 30% of Q tot (instead of ~ 70%) –Noise ~< 10 e- ENC Gain & Noise very close to Mimosa 8 ready for full translation of Mimosa 8 But: less signal charge collected adapt sensing diode size Calibration peak Cluster seed Charge (electrons)Noise (electrons) Mean ~ 8.3 e x 2.4 μm 2 T = 20 o C 25 MHz

Multi-memory architecture

Socle, Lyon, janvier 2006Auguste Besson10 Multi-memory architecture (1) Mimosa 12 (MOSAIC-1) –Layers 3-5. (& layer 2 ?) –Prototype exploring various types & dimensions of memory cells AMS-0.35 m techno 4 capacitors/pixel (35 m pitch) 6 sub-arrays with various MOS capa.: 50, 100, 200 fF Aim for minimal size capacitors providing satisfactory precision, depending on pitch - i.e. layer - (~ 4.6 fF/ m 2 ) Minimal size of capacitor: ~ 50 fF (see also CAP for BELLE) Cap : 100 fF Cap : 200 fF Cap : 50 fF AC : Poly - Poly AC : Nwell - Poly Clamping

Socle, Lyon, janvier 2006Auguste Besson11 Multi-memory architecture (2) 4 capacitors / pixel –Calibration peak with 55 Fe With sampling and read-out With direct read-out Standard pixel Without sampling Standard pixel Without sampling Standard pixel Without sampling 50 fF 100 fF 200 fF t int ~ 230 μs ~ O(1 ms) Storage duration is critical

Radiation hardness

Socle, Lyon, janvier 2006Auguste Besson13 Radiation hardness (1) Mimosa 11: structures –AMS 0.35 μm opto. –8 different sub-matrices Standard rad tol: thin oxyde and guard ring Minimize leakage current Mimosa 11: test beam –DESY, 5 GeV e- –T = 40 o C ; 700 μs (2.5 MHz) –S/N (MPV) ~ 24 –Eff = 99, % N-Well p+ SBSF P-Well P-epi n+ p+ Standard (A0 sub 2) N-Well Partially P+ doped p+ SBSF P+ poly filling P+ poly filling P-Well P-epi n+ p+ Partially P+ doped Rad hard (A3 sub 1)

Socle, Lyon, janvier 2006Auguste Besson14 Mimosa °C10°C40 °C 0kRad 10 keV X-ray Temperature 500kRad (with S. Amar-Youcef, C. Müntz, J. Stroth. Frankfurt) Integration time (ms) Noise (e-) Standard structure Rad hard structure 200 μs Standard structure Rad hard structure 4-pixel cluster: 55 Fe spectrum before (red) and after (green) 1 Mrad of (200 µs integ. time)

Other on-going activities

Socle, Lyon, janvier 2006Auguste Besson16 Other on-going activities Fabrication process exploration –AMS 0.35 μm opto : Excellent performances (M9, M11, M14) Epi. Layer ~ 12 μm S/N ~ (MPV) det ~ % ; sp = m (20 m pitch) Will be used for EUDET – TSMC 0.25 μm Typical cluster charge for MIP ~ 450 e- Epi. Layer ~ 6.5 μm ADC –LPC-Clermont : full flash ADC proto. fab. in Automn 2005 –LPSC-Grenoble : semi-flash ADC proto. subm. in Dec 2005 –IPHC/IReS: Wilkinson double ramp (4.5 bits) –DAPNIA & IReS: Succ. approx. 4 & 5 bits. Thinning (Mimosa-5) –TRACIT company: Thinning at 50 μm successful (mech.) electrical tests foreseen On going tests to thin down to 40 μm

Socle, Lyon, janvier 2006Auguste Besson17 MimoSTAR 2 MimoSTAR-2 –AMS 0.35 μm OPTO. 30 μm pitch –2 matrices 64 x 128, JTAG architecture –Rad. hard structure (based on Mimosa 11) To be installed in STAR (2006) Ionising radiation tolerant pixel validated at temperature up to + 40 o C No active cooling needed at int. time ~< O(1 ms) Prototype of a EUDET telescope demonstrator chip T est-beam results (DESY, 5 GeV e-) 2 r.o. time (2 and 10 MHz) 800 μs and 4 ms (preliminary) Efficiency vs TempS/N (MPV) vs Temp

Socle, Lyon, janvier 2006Auguste Besson18 Summary and Outlook M8: first prototype with discri (TSMC 0.25) Very good m.i.p detection performances implement ADC Signal charge assessed: ~ 450 e - only (AMS 0.35 opto: > 700 e - ) M15: M8 pixel (with CDS) also validated in AMS 0.35 opto M11: rad. tol. room T o up to 1MRad (if t int ~< 1 ms) M12: >~ 50 fF capacitors seem mandatory Not suited to inner most layer but perhaps to 2 nd layer ADC: study of several alternative IReS, LPSC, LPCC, DAPNIA Thinning below 50 μm has started EUDET: Telescope of 5-7 planes of MIMOSA sensors with digital output and integrated zero suppression (M8/M15++) MimoSTAR 2 tested with m.i.p.s demonstrator in 2007

Socle, Lyon, janvier 2006Auguste Besson19 Liste des personnels IPHC/IReS: J.Baudot, A.B., G. Claus, C. Colledani, (G. Deptuch), M. Deveaux, A. Dorokhov, W. Dulinski, M. Goffe, D. Grandjean, F. Guilloux, S. Heini, A. Himmi, Ch. Hu, K. Jaaskelainen, M. Pellicioli, O.Robert, A. Shabetai, M. Szelezniak, I. Valin, M. Winter DAPNIA: M. Besançon, Y. Degerli, N. Fourches, Y. Li, P. Lutz, F. Orsini LPSC: D.Dzahini, M.Dahoumane, H.Ghazlane, J.Y.Hostachy, E.Lagorio, O.Rossetto, D.Tourres LPCC: B.Bohner, R.Cornat, P.Gay, J.Lecoq, L.Royer (Univ. Frankfurt: S. Amar-Youcef)

Socle, Lyon, janvier 2006Auguste Besson20 Mimosa °C10°C40 °C 0kRad 20kRad 10 keV X-ray Temperature 500kRad 1000kRad (with S. Amar-Youcef, C. Müntz, J. Stroth. Frankfurt) Integration time (ms) Noise (e-) Standard structure Rad hard structure 200 μs

Socle, Lyon, janvier 2006Auguste Besson21 M8 digital : Hit multiplicity

Socle, Lyon, janvier 2006Auguste Besson22 Multi-memory architecture (1) Diode « self-bias » Couplage AC 50fF Ampli. Nmos G~10 4 capacités de stockage Ampli. Source Follower Diode « self-bias » Couplage AC 50fF –Poly-Poly –Nwell - Poly Ampli. Pmos G~7 4 capacités de stockage ( Cap =200 fF) Ampli. Source Follower Diode « self- bias » Couplage AC 50fF Ampli. Nmos G~10 2 capacités de stockage « clamping » (CDS intégré) Ampli. Source Follower Cap : 100 fF Cap : 200 fF Cap : 50 fF AC : Poly - Poly AC : Nwell - Poly Clamping