Spatio-Temporal Information for Society Münster, 2014

Slides:



Advertisements
Similar presentations
Chapter 8 Geocomputation Part A:
Advertisements

Games as Emergent Systems first schema on “rules”.
Suharsh Sivakumar December 11,  A grid of cells where all the cells are governed by a common set of rules based on the number of adjacent neighbors.
Lectures on Cellular Automata Continued Modified and upgraded slides of Martijn Schut Vrij Universiteit Amsterdam Lubomir Ivanov Department.
Game of Life Rules and Games Linh Tran ECE 573. What is Life? Life is just one example of a cellular automaton, which is any system in which rules are.
1 Stefano Redaelli LIntAr - Department of Computer Science - Unversity of Milano-Bicocca Space and Cellular Automata.
CITS4403 Computational Modelling Game of Life. One of the first cellular automata to be studied, and probably the most popular of all time, is a 2-D CA.
Cellular Automata (Reading: Chapter 10, Complexity: A Guided Tour)
1 Chapter 13 Artificial Life: Learning through Emergent Behavior.
CELLULAR AUTOMATON Presented by Rajini Singh.
CELLULAR AUTOMATA Derek Karssenberg, Utrecht University, the Netherlands LIFE (Conway)
An Introduction to Cellular Automata
Today’s Plan Introduction to Artificial Life Cellular Automata
Cellular Automata Orit Moskovich
Introduction to Artificial Life and Cellular Automata
Cellular Automata Avi Swartz 2015 UNC Awards Ceremony.
Introduction At the heart of the growth of a multi-cellular organism is the process of cellular division… … aka (in computing) self-replication.
Nawaf M Albadia Introduction. Components. Behavior & Characteristics. Classes & Rules. Grid Dimensions. Evolving Cellular Automata using Genetic.
Discovery of Cellular Automata Rules Using Cases Ken-ichi Maeda Chiaki Sakama Wakayama University Discovery Science 2003, Oct.17.
The Role of Artificial Life, Cellular Automata and Emergence in the study of Artificial Intelligence Ognen Spiroski CITY Liberal Studies 2005.
Dynamic Models of Segregation
Complex systems complexity chaos the butterfly effect emergence determinism vs. non-determinism & observational non-determinism.
Governor’s School for the Sciences Mathematics Day 13.
Cities and Complexity Gilberto Câmara Based on the book “Cities and Complexity” by Mike Batty Reuses on-line material on Batty’s website
CS 484 – Artificial Intelligence1 Announcements Lab 4 due today, November 8 Homework 8 due Tuesday, November 13 ½ to 1 page description of final project.
Course material – G. Tempesti Course material will generally be available the day before the lecture Includes.
1 Cellular Automata and Applications Ajith Abraham Telephone Number: (918) WWW:
1 Chapter 13 Artificial Life: Learning through Emergent Behavior.
Introduction to Lattice Simulations. Cellular Automata What are Cellular Automata or CA? A cellular automata is a discrete model used to study a range.
Playing God: The Engineering of Functional Designs in the Game of Life Liban Mohamed Computer Systems Research Lab
Cellular Automata Spatio-Temporal Information for Society Münster, 2014.
CELLULAR AUTOMATA A Presentation By CSC. OUTLINE History One Dimension CA Two Dimension CA Totalistic CA & Conway’s Game of Life Classification of CA.
Cellular Automata Martijn van den Heuvel Models of Computation June 21st, 2011.
The Game of Life Erik Amelia Amy. What is the “Game of Life?” The “Game of Life” (often referred to as Life) is not your typical game. There are no actual.
Model Iteration Iteration means to repeat a process and is sometimes referred to as looping. In ModelBuilder, you can use iteration to cause the entire.
Cellular Automata. John von Neumann 1903 – 1957 “a Hungarian-American mathematician and polymath who made major contributions to a vast number of fields,
Cellular Automata FRES 1010 Eileen Kraemer Fall 2005.
Cellular Automata Introduction  Cellular Automata originally devised in the late 1940s by Stan Ulam (a mathematician) and John von Neumann.  Originally.
CS851 – Biological Computing February 6, 2003 Nathanael Paul Randomness in Cellular Automata.
Cellular Automata BIOL/CMSC 361: Emergence 2/12/08.
Pedro R. Andrade Münster, 2013
Intro to Life32. 1)Zoom to 10 That will allow you to see the grid and individual cells.
Introduction to Enviromental Modelling Lecture 1 – Basic Concepts Gilberto Câmara Tiago Carneiro Ana Paula Aguiar Sérgio Costa Pedro Andrade Neto.
Strategies and Rubrics for Teaching Chaos and Complex Systems Theories as Elaborating, Self-Organizing, and Fractionating Evolutionary Systems Fichter,
Conway’s Game of Life Jess Barak Game Theory. History Invented by John Conway in 1970 Wanted to simplify problem from 1940s presented by John von Neumann.
Lecture ISI_10 CELLULAR AUTOMATA INTRODUCTION. OUTLINE OF PRESENTATION Some facts from history Definition of Cellular Automata Parameters of Cellular.
An Introduction to TerraME Pedro Ribeiro de Andrade São José dos Campos,
Modelagem Dinâmica com TerraME Aula 5 – Building simple models with TerraME Tiago Garcia de Senna Carneiro (UFOP) Gilberto Câmara (INPE)
Modelagem Dinâmica com TerraME: Aula 3 Interface entre TerraME e LUA Gilberto Câmara (INPE) Tiago Garcia de Senna Carneiro (UFOP)
Application of a CA Model to Simulate the Impacts of Road Infrastructures on Urban Growth Nuno Pinto and António Antunes, University of Coimbra with Josep.
1 1 2 What is a Cellular Automaton? A one-dimensional cellular automaton (CA) consists of two things: a row of "cells" and a set of "rules". Each of.
Physics 313: Lecture 17 Wednesday, 10/22/08. Announcements ● Please make an appointment to see me, to choose a project by Friday, October 24. ● Please.
Intro to Life32.
Chaotic Behavior - Cellular automata
Hiroki Sayama NECSI Summer School 2008 Week 3: Methods for the Study of Complex Systems Cellular Automata Hiroki Sayama
Cellular Automata Pedro R. Andrade Tiago Garcia de Senna Carneiro
Pedro Ribeiro de Andrade Münster, 2013
Pedro R. Andrade Münster, 2013
Illustrations of Simple Cellular Automata
Complex Systems Engineering SwE 488 Artificial Complex Systems
Alexei Fedorov January, 2011
Cellular Automata.
Pedro R. Andrade Münster, 2013
Spatio-temporal information in society: cellular automata
Hiroki Sayama NECSI Summer School 2008 Week 2: Complex Systems Modeling and Networks Cellular Automata Hiroki Sayama
Excursions into Logic Based Computation using Conway’s Game of Life
The Engineering of Functional Designs in the Game of Life
Cellular Automata What could be the simplest systems capable of wide-ranging or even universal computation? Could it be simpler than a simple cell?
Activity 2-1: The Game of Life
Cellular Automata (CA) Overview
Presentation transcript:

Spatio-Temporal Information for Society Münster, 2014 Cellular Automata Spatio-Temporal Information for Society Münster, 2014

Cellular Automata Firstly developed by Hungarian mathematician John von Neumann, who proposed a model based on the idea of ​​logical systems that were self-replicating.

Self-replicating Automata

Basic Cellular Automaton Grid of cells Neighbourhood Finite set of discrete states Finite set of transition rules Initial state Discrete time

2-Dimensional Automaton A 2-dimensional cellular automaton consists of an infinite (or finite) grid of cells, each in one of a finite number of states. Time is discrete and the state of a cell at time t is a function of the states of its neighbors at time t-1.

Neighborhood and Rules Neighbourhood States Space and Time t t1 Each cell is autonomous and change its state according to its current state and the state of its neighborhood.

www.terrame.org “CAs contain enough complexity to simulate surprising and novel change as reflected in emergent phenomena” (Mike Batty)

Source: Rita Zorzenon

Game of life

CellularSpace A CellularSpace is a set of Cells. It consists of an area of interest, divided into a regular grid. world = CellularSpace{ xdim = 5, ydim = 5 } forEachCell(world, function(cell) cell.value = 3 end)

Neighborhood A Neighborhood represents the proximity relations of a cell. world:createNeighborhood{ strategy = "moore", self = false } Von Neumann Moore

Legend Defines colors to draw the Cells of a CellularSpace. Can be used with map observers. coverLeg = Legend { grouping = "uniquevalue", colorBar = { {value = 0, color = "white"}, {value = 1, color = "red"}, {value = 2, color = "green”} }

Synchronizing a CellularSpace TerraME can keep two copies of a CellularSpace in memory: one stores the past values of the cells, and another stores the current (present) values of the cells. The model equations must read the past copy and write the values to the present copy of the cellular space. At the correct moment, it will be necessary to synchronize the past copy with the current values of the cellular space.

Characteristics of CA models Self-organising systems with emergent properties: locally defined rules resulting in macroscopic ordered structures. Massive amounts of individual actions result in the spatial structures that we know and recognise;

Which Cellular Automata? For realistic geographical models the basic CA principles too constrained to be useful Extending the basic CA paradigm From binary (active/inactive) values to a set of inhomogeneous local states From discrete to continuous values (30% cultivated land, 40% grassland and 30% forest) Transition rules: diverse combinations Neighborhood definitions from a stationary 8-cell to generalized neighbourhood From system closure to external events to external output during transitions

Game of Life Static Life Oscillating Life Migrating Life

Conway’s Game of Life The universe of the Game of Life is an infinite two-dimensional grid of cells, each of which is either alive or dead. Cells interact with their eight neighbors.

Schelling Model for Segregation Start with a CA with “white” and “black” cells (random) The new cell state is the state of the majority of the cell’s Moore neighbours White cells change to black if there are X or more black neighbours Black cells change to white if there are X or more white neighbours How long will it take for a stable state to occur?

Schelling’s Model of Segregation Micro-level rules of the game Stay if at least a third of neighbors are “kin” < 1/3 Move to random location otherwise

One-Dimensional CA’s Game of Life is 2-D. Many simpler 1-D CAs have been studied For a given rule-set, and a given starting setup, the deterministic evolution of a CA with one state (on/off) can be pictured as successive lines of colored squares, successive lines under each other

Wolfram’s CA classes 1,2 From observation, initially of 1-D CA spacetime patterns, Wolfram noticed 4 different classes of rule-sets. Any particular rule-set falls into one of these:-: CLASS 1: From any starting setup, pattern converges to all blank -- fixed attractor CLASS 2: From any start, goes to a limit cycle, repeats same sequence of patterns for ever. -- cyclic attractors

Wolfram’s CA classes 3,4 CLASS 3: Turbulent mess, chaos, no patterns to be seen. CLASS 4: From any start, patterns emerge and continue continue without repetition for a very long time (could only be 'forever' in infinite grid) Classes 1 and 2 are boring, Class 3 is messy, Class 4 is 'At the Edge of Chaos' - at the transition between order and chaos -- where Game of Life is!.

Wolfram rule 30 current pattern 111 110 101 100 011 010 001 000 new state for center cell 1

Wolfram Rule 110

Wolfram Rule 110 Proven to be Turing Complete - Rich enough for universal computation interesting result because Rule 110 is an extremely simple system, simple enough to suggest that naturally occurring physical systems may also be capable of universality

Rule 110 Example Requires potentially infinite dimensions for general computation

Classifying Cellular Automata Rules Class One - Fixed or Static: Rules that produce dull universes, such as all dead cells or all living cells; e.g. ice. Class Two - Periodic or Oscillatory: Rules that produce stable, repetitive configurations. Class Three - Chaotic: Rules that produce chaotic patterns; e.g. molecules in a gas. Class Four - Complexity: Rules that produce complex, locally organized patterns; e.g. behave like a flowing liquid..

Celular automata classifications  = chance that a cell is alive in the next state