Contemporary Approaches to Acute Mechanical Circulatory Support Navin K. Kapur, MD, FACC, FSCAI, FAHA Associate Professor, Department of Medicine Interventional Cardiology & Advanced Heart Failure Programs Executive Director, The Cardiovascular Center for Research & Innovation
Relevant Disclosures Research Funding: Abiomed, Maquet, Cardiac Assist, Abbott, Boston Scientific Speaker/Consulting Honoraria: Abiomed, Maquet, Cardiac Assist, Abbott
The Field of MCS: Robust with Innovation 2007 2017 IVADs HVAD Impella CP TH-RV AD CP RP Impella 5. TH + 5.0 Bi-Pellas Tufts Interventional Heart Failure Program
2007: A Major Inflection Point in CV Medicine Seyfarth: ISAR-SHOCK (Impella 2.5 vs IABP) Burkhoff : TH vs IABP Thiele : TH vs IABP (Cardiogenic Shock) Stretch and Bonde JACC 2014
Hemodynamic Efficacy Without Clear Clinical Benefit in Small RCTs Comparing Acute MCS Options Thiele and de Waha et al EHJ 2017
The Spectrum of Acute MCS Devices in 2017 Left Ventricle Right Ventricle
Distinct Hemodynamic Profiles of Acute MCS IABP ( Pressure + Volume) VA-ECMO ( Pressure + Volume) Tandem ( Pressure + Volume) Impella ( Pressure + Volume) Annamalai et al JHLT 2016 Esposito et al ASAIO 2016 Kapur et al. ASAIO 2016
Detroit Cardiogenic Shock Initiative The Hemodynamic Support Equation for Acute MCS From Arithmetic to Calculus Hemodynamic Problem Recovery Hemo-Metabolic Problem Time in Cardiogenic Shock Death Bridge to Recovery Detroit Cardiogenic Shock Initiative Rx: Hemodynamic Support Circulatory and Ventricular It’s Too Late for AMCS Impress Trial Rx: Multi-organ Support Unloading, Ventilator, CVVHD Kapur and Esposito Curr Cardio Risk 2016 & F1000 2017
Matching Patients and AMCS Pumps The Tufts Cardiogenic Shock Algorithm Kapur & Esposito. F1000 Reviews 2017
Matching Patients and AMCS Pumps The Tufts Cardiogenic Shock Algorithm Kapur & Esposito. Curr Cardiol. 2016
Hemodynamic Formulas to Assess RV Function Cardiac Filling Pressures RA / PCWP >0.63 (RVF after LVAD) [14] >0.86 (RVF in Acute MI)[31] PA Pulsatility Index (PASP-PADP) / RA <1.85 (RVF after LVAD) [42] <1.0 (RVF in Acute MI) [41] Pulmonary Vascular Resistance mPA-PCWP / CO >3.6 (RVF after LVAD) [16] Trans-pulmonary Gradient mPA-PCWP Undetermined [36] Diastolic Pulmonary Gradient PAD - PCWP Undetermined [36, 37] RV Stroke Work (mPAP-RA) x SV x 0.0136 <15 (RVF after LVAD) [16] <10 (RVF after Acute MI) [40] RV Stroke Work Index (mPA-RA)/ SV Index <0.3-0.6 (RVF after LVAD) [14,42] Pulmonary Artery Compliance SV / (PASP-PADP) <2.5 (RVF in Chronic Heart Failure) [39] Elastance PASP/ SV Undetermined [38] Right atrial (RA); Pulmonary artery (PA); PA systolic pressure (PASP); PA diastolic pressure (PADP); mean PA pressure (mPAP); Pulmonary capillary wedge pressure (PCWP); Right ventricular failure (RVF); Left ventricular assist device (LVAD); Myocardial infarction (MI); Stroke volume (SV) Kapur, Esposito, and Burkhoff et al Circulation 2017
From Pulsatile Load to PA Pulsatility RAP = 22 RAP = 15 RAP = 7 Kiernan and Kapur. JIC 2009
Hemodynamic Signatures of RV Failure The Pulmonary Artery Pulsatility Index (PAPi) PA Pulse Pressure (Systolic – Diastolic) PAPi CVP (RA Pressure) Korabathina & Kapur CCI 2012
Not All RV AMCS Devices are Created Equal Kapur NK et al Circulation 2017
TandemHeart in Right Ventricular Failure pRVAD = 3.4+0.5 LPM sRVAD = 4.9+1.0 LPM Early RV Support = Reduced In-hospital Mortality Kapur NK et al. JACC Heart Failure 2013 Kapur NK et al. JHLT 2012
Percutaneous Support for RV Failure Impella RP Implant RECOVER RIGHT TRIAL Size 22 Fr pump on an 11 Fr catheter Flows > 4 L/min Anderson MA et al JHLT 2015
Anderson MA et al. JHLT 2015
Direct RV Bypass: Impella RP for Acute RVF Kapur, Esposito and Burkhoff et al Circulation 2017
Indirect RV Bypass: VA-ECMO for Acute RVF Kapur, Esposito and Burkhoff et al Circulation 2017
Shock Profiles and Outcomes with Impella & VA-ECMO BiV Support for BiV Congestion 100% 90% 80% In-Hospital Mortality 60% 70% 60% 50% 40% 25% 30% 20% 10% 0% LV Impella Alone BiPella Biventricular Congestion is Common in CGS Univentricular Support For Univentricular Failure Esposito & Kapur et al Under Review 2017
Impella 5.0 LVAD Activation Hemodynamics 5.0 Alone CVP 28 CVP 24 LV AO
Impella 5.0 + RP Activation Hemodynamics Bi-Pella CVP 22 CVP 34 LV AO
LV Suction with Impella CP or 5.0 due to RV Failure
BiPella Supported Shock PCI : LM Culotte + LAD + LCx Gorgeous Result Heroic Accomplishment Nice Job Patient DIED. Don’t Ignore the Door to Support Time.
Clinical Success with Acute MCS: Less about the tools, More about how and when you use them Kapur and Davila Eur H J 2017
Conclusions Acute MCS devices have distinct hemodynamic effects Early hemodynamic support may limit conversion of hemodynamic shock (reversible) to hemo-metabolic shock (irreversible). Defining hemodynamic status may improve optimal acute MCS device selection Early identification of RVF and early use of RV AMCS improves outcomes. Don’t hang your hat on a number. Look for hemodynamic signs of Bi-V failure when managing cardiogenic shock Kapur et al Circulation 2017
Thank you To Learn More about Acute MCS & Hemodynamics nkapur@tuftsmedicalcenter.org To Learn More about Acute MCS & Hemodynamics December 15-16 2017 Berlin, Germany Interventional Heart Failure August 24-25, 2017: Barcelona, Spain