Interactive Event Sequence Query and Transformation Megan Monroe, Sana Malik, Chris Imbriano, Fan Du, Catherine Plaisant, and Ben Shneiderman
Temporal Event Data 6:01am Coffee 11:01pm Netflix Me: 6:00am Wake Up 6:02am – 11:00pm Work on Dissertation
Temporal Event Data 6:01am Coffee 11:01pm Netflix Me: 6:00am Wake Up 6:02am – 11:00pm Work on Dissertation
Temporal Event Data 6:01am Coffee 11:01pm Netflix Me: 6:00am Wake Up 6:02am – 11:00pm Work on Dissertation
EventFlow
EventFlow Check Airway Breath Sounds Pulse GCS Secondary Survey
Time Number of Records
EventFlow
Data Analysis
Data Analysis + Visualization
Data Analysis + Visualization
Analysis + Viz Insight
Data Analysis + Visualization
Insight $#!%! Analysis + Viz
Data Hi. Analysis + Visualization
1 2 3 QUERY
1 2 3
1 2 10 records selected 3
1 2 3 Monroe et al., CHI, 2013.
English Actual Query OR A overlaps B
LABA
New LABA
Other New LABA
Other New LABA Other
QUERY
QUERY TRANSFORMATION
Data doesn’t match study perspective
Data doesn’t match study perspective
Monroe et al., AMIA VAHC Workshop, 2013.
5 d
3 mo
Data Analysis + Visualization
Query + Transformation Data Query + Transformation Analysis + Visualization
Query + Transformation Data Query + Transformation + Visualization Analysis + Visualization
EventFlow
Future work
Contact Me: Megan Monroe madeyjay@umd.edu www.cs.umd.edu/hcil/eventflow/