sTGC Router Optical Transceiver options

Slides:



Advertisements
Similar presentations
IEEE10/NSS R. Kass N A. Adair, W. Fernando, K.K. Gan, H.P. Kagan, R.D. Kass, H. Merritt, J. Moore, A. Nagarkar, S. Smith, M. Strang The Ohio State.
Advertisements

Richard Kass IEEE NSS 11/14/ Richard Kass Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector K.E. Arms, K.K. Gan, M.
VERTEX 2002 Experience with Parallel Optical Link for the CDF Silicon Detector S. Hou for the DOIM group Academia Sinica, Taiwan.
Optoelectronic Multi-Chip Module Demonstrator System Jason D. Bakos Donald M. Chiarulli, Steven P. Levitan University of Pittsburgh, USA.
VCSEL Failures in ATLAS T. Flick, University of Wuppertal TWEPP 2010 Aachen,
*Supported by the EU FP7-PEOPLE-2012-ITN project nr , INFIERI, "Intelligent Fast Interconnected and Efficient Devices for Frontier Exploitation in.
March, 2013 Presenting: Avner Badihi TECHNOLOGY&MANUFACTURING XLoom Proprietary and Confidential 120GB-300Gb Optical Interconnect Solutions for Optical.
Status of opto R&D at SMU Jingbo Ye Dept. of Physics SMU For the opto WG workshop at CERN, March 8 th, 2011.
16 Sep 2008 Versatile Link Status Report F. Vasey on behalf of the project steering board With input from C. Issever J. Troska.
IEEE06/San Diego R. Kass N Bandwidth of Micro Twisted-Pair Cables and Spliced SIMM/GRIN Fibers and Radiation Hardness of PIN/VCSEL Arrays W. Fernando,
A Serializer ASIC for High Speed Data Transmission in Cryogenic and HiRel Environment Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group.
DPF 2013 R. Kass 1 P. Buchholz, M. Ziolkowski Universität Siegen OUTLINE Lessons learned… IBL/nSQP opto-board overview assembly experience radiation hardness.
R. KassIEEE05/Puerto Rico N Radiation-Hard Optical Link for the ATLAS Pixel Detector Richard Kass The Ohio State University W. Fernando, K.K. Gan,
R. KassIEEE04/Rome 1 Radiation-Hard ASICs for Optical Data Transmission in the ATLAS Pixel Detector Richard Kass The Ohio State University K.E. Arms, K.K.
Status of the PiN diodes irradiation tests B. Abi( OSU), R. Boyd (OU), P. Skubic (OU), F. Rizatdinova (OSU), K.K. Gan (Ohio State U.)
DOIM Parallel Optical Link s: TX/RX S. Hou, R.S. Lu 19-Dec-2003, Lake Geneva.
Versatile Link The Versatile Transceiver Towards Production Readiness Csaba Soos on behalf of Manoel Barros Marin, Stéphane Détraz, Lauri Olanterä, Christophe.
IEEE08/NSS R. Kass N Radiation-Hard/High-Speed Data Transmission Using Optical Links W. Fernando, K.K. Gan, A. Law, H.P. Kagan, R.D. Kass, J. Moore,
in non-hermetic 85/85 condition
Versatile Link The Versatile Transceiver Development Status Csaba Soos, Vincent Bobillier, Stéphane Détraz, Spyros Papadopoulos, Christophe Sigaud, Pavel.
2/2/2009 Marina Artuso LHCb Electronics Upgrade Meeting1 Front-end FPGAs in the LHCb upgrade The issues What is known Work plan.
14/6/2000 End Cap Muon Trigger Review at CERN 1 TGC LVL1 Trigger System Link C.Fukunaga/Tokyo Metropolitan University TGC electronics group System link.
CSC Endcap Muon Port Card and Muon Sorter Upgrade Status May 2013.
ICTPP09 R. Kass Radiation-Hardness of VCSELs & PINs Richard Kass The Ohio State University OUTLINE Introduction/ATLAS pixel detector Radiation Hardness.
S.Hou, Academia Sinica Taiwan. 2Outline Optical links for ATLAS Laser-driver  fiber  PIN-driver LHC modules in service Rad-hard requirement for LHC/SLHC.
Optical Links CERN Versatile Link Project VL – Oxford involvement CERN VL+ for ATLAS/CMS phase II upgrade – Introduction and aims – Oxford workpackage:
Evaluation of Multi-Gbps Optical Transceivers for Use in Future HEP Experiments Luis Amaral CERN – PH/ESE/BE – Opto 16/09/2008.
C. Issever, Oxford 1 Status of Radiation Proposal Focus on: Amendment to Proposal Radiation Protocols.
DPF 2011 R. Kass 1 P. Buchholz, A. Wiese, M. Ziolkowski Universität Siegen OUTLINE Introduction Result on 4-channel Driver/Receiver with Redundancy Design.
New Small Wheel muon trigger optical module New Small Wheel muon trigger optical module S. Hou 2014/08/29 Academia Sinica.
Versatile Link The Versatile Transceiver Feasibility Demonstration (Project phase II update) Csaba Soos, Jan Troska, Stéphane Détraz, Spyros Papadopoulos,
Implementing a 10 Gb/s VCSEL Driven Transmitter for Short Range Applications Irfan N. Ali Michael C. Clowers David S. Fink Sean K. Garrison Jeff A. Magee.
PIN current degradation Versus 3 MeV proton fluence 3 MeV proton (a)(b) (c)(d) Study of radiation damage in VCSELs and PINs for the optical links of the.
Level-1 Data Driver Card (L1DDC) HEP May 2014 Naxos 08/05/2014HEP 2014, NAXOS Panagiotis Gkountoumis National Technical University of Athens.
A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group Department of.
1 The Link-On-Chip (LOC) Project at SMU 1.Overview. 2.Status 3.Current work on LOCs6. 4.Plan and summary Jingbo Ye Department of Physics SMU Dallas, Texas.
FPGAs in ATLAS Front-End Electronics Henrik Åkerstedt, Steffen Muschter and Christian Bohm Stockholm University.
CMS Upgrade Workshop – Nov 20, H C A L Upgrade Workshop CMS HCAL Working Group FE Electronics: New GOL Nov 20, 2007 HCAL personnel interested in.
1 Preparation to test the Versatile Link in a point to point configuration 1.Versatile Link WP 1.1: test the Versatile Link in a point to point (p2p) configuration.
WG3 – STRIP R&D ITS - COMSATS P. Riedler, G. Contin, A. Rivetti – WG3 conveners.
Ideas for Super LHC tracking upgrades 3/11/04 Marc Weber We have been thinking and meeting to discuss SLHC tracking R&D for a while… Agenda  Introduction:
Slides for Opto-Working Group on COTS and PIC Microcontroller D. Underwood Sept 12, 2012.
Dirk Wiedner 16 th February OT/ITCALO MUON RICH1/TT RICH2 +TFC system.
Opto Working Group Meeting Summary Tuesday 8 March 2011 Tobias Flick and Francois Vasey.
Ageing tests of VCSELs in non-hermetic 85/85 condition Ageing tests of VCSELs in non-hermetic 85/85 condition S. Hou, 2014/08/26 Academia Sinica.
March 14, 2016 Report on SMU R&D work1 Link-On-Chip (LOC) 1st Prototype  Status:  Prototype chip with the clock unit (PLL), serializer, laser driver,
BLM System R2E and Availability Workshop, B.Dehning 1 Bernd Dehning CERN BE-BI
LOCld – The fastest VCSEL driver in optical link for ATLAS Futian Liang USTC-IHEP, May. 3 rd, 2013.
1 Status report on the LAr optical link 1.Introduction and a short review. 2.The ASIC development. 3.Optical interface. 4.Conclusions and thoughts Jingbo.
Optical Communications for Future Trackers ANL/FNAL/UC/VWS Meeting Nov., 2011 Alan Prosser CD/ESE Fermilab 1.
1 Roger Rusack The University of Minnesota. Projects  Past Projects  11,000 channels of 0.8 Gbs for the CMS crystal calorimeter readout.  1,500 channels.
Radiation hardness of the 1550 nm edge emitting laser for the optical links of the CDF silicon tracker S. Hou 15-Jun-2004.
FF-LYNX: 2010 & H Luca Fanucci Pisa, 14 Giugno 2011.
OTMB Development and Upgrade Plan for LS2
Southern Methodist University
High-speed Light Peak optical link for high energy applications
HV/HR CMOS in Oxford: Facilities, experience, and interests Arndt, Bortoletto, Huffman, Jaya John, Nickerson, Placket, Shipsey, Vigani.
Next generation rad-hard links
Milano Activities: an update Mauro Citterio On behalf of INFN Milano
Contacts:- For enquiries, please contact the following members:
ATLAS Tracker Upgrade Liverpool December '06
The Silicon-on-Sapphire Technology:
Optical data transmission for
Status report of the ATLAS SCT optical links
The Role of Light in High Speed Digital Design
W. Ali, R. Corsini, E. Ciaramella SSSA Pisa Italy
VCSEL drivers in ATLAS Optical links
ATLAS Tile Calorimeter Interface The 8th Workshop on Electronics for LHC Experiments, Colmar, 9-13 September 2002 K. Anderson, A. Gupta, J. Pilcher, H.Sanders,
Vertex Detector Overview Prototypes R&D Plans Summary.
K. Gill, G. Cervelli, R. Grabit, F. Jensen, and F. Vasey. CERN, Geneva
Presentation transcript:

sTGC Router Optical Transceiver options Muon Week 2013/09/17 S. Hou Academia Sinica Taiwan

Outline Optical transceivers Issues on Fabrication, Radiation hardness Versatile Link project : CERN TOSA+GBLD driver LAr SMU TOSA+LOCld driver Commercial products SFP+, LightPeak, .. Issues on Fabrication, Radiation hardness Choice and plan LAr Transceiver fits our need? Activities and plan

Outer detector transceivers vs Commercial products Commercial: telecommunication and computing 10 Gb/s links with SFP+ transceivers for professional facilities 4.8 Gb/s USB3 for personal computing and household electronics Off-the-shell to HEP Laser, PIN are commonly rad-hard TOSA/ROSA, relieved coupling issue commercial ASICs are not rad-hard? HEP projects, rad-hard drivers + VCSEL CERN Versatile links, 850 nm, MM, GBLD (IBM 130 nm) SMU Multi-TX, 850nm, MM, LOCld (SOS .25 μm) 5 Gbps USB3 CERN VTRx 10 GB/s SFP+ SMU MTx

CERN TX module SFP format TOSA MM 850nm GBLD driver 5 Gbps VL, Vasey, 20120608 BGT, Moreira, 20120608

LAr MTX of SMU Similar to CERN VL product, TOSA of MM, 850nm Use LOCld, driver of SOS process Speed 8 Gb/s Different geo/connector configuration constrain by LAr geometry TWEPP2012, Liu

HEP optical module production, lessons learned Custom design modules are labor intensive, Difficulties include: - alignment for light coupling to fiber - uniformity in light coupling efficiency CDF used V-groove, submount Poor uniformaty SCT inner, used 45 deg fiber cuts as flat mirror SCT outer, used Alignment pins on FR4 as flat mirror

ATLAS optical failures, lessons learned SCT outer: suggested cause of ESD, moisture, not yet cured. LAr OTX: suggested cracks in TOSA packaging (bending leads) modules replace and cured Favor VECEL in TOSA package Air tight in dry nitrogen OTX FEB G-link TX Epoxy Epo-Tek 353ND over active surface of VCSEL SMUX ~ 400 mm

Evaluation of commercial products, SFP+ Commercial Transceivers : commonly In TX/RX pair, for computer drivers plus control chip control chips are radiation fragile Newer CMOS chips maybe very different 10 GB/s SFP+ TWEPP2008, Amaral

New generation of optical transceivers Intel Light Peak project High speed multiple I/O protocols, over a single cable USB3, Active Optical Cable 4.8 Gbps is in market Module by FOCI investigated - Bare die VCSEL/PIN (Avago) IC (VO510 by VIA Labs) drivers + control, of TSMC CMOS 90nm - PEI lens coupling to MM fibers

Light Peak Optical module Advantage in packaging - Bare dies and chip in 2 mm cap, 5 mm wide Radiation tests : - Proton SEE 3x10-3 Hz @ 3.4x109 p(30MeV)/cm2s - X-ray TID 380 kRad in 1hr observed 14 SEU VIA Labs V0510, function

VCSEL characteristics TOSA, flex, pin VCSEL: Vertical Cavity surface emitting laser diode GaAs, thin active layer ‹10 μm, very rad-hard Little temperature dependence Linear V-I, linear Light output to current Commonly driven at 10 mA, (2 V). Burn by over current (>20 mA) L-I of an VCSEL array of 12 channels

VCSEL radiation damage (1) VCSEL degradation is linear to fluence independent to Flux rate Fast annealing by charge injection (~5hr) operation current (10 nA) applied Signal speed is not effected wave form, Bit-Error-Rate tests L-I of VCSEL (oxide) vs. online Fluence L-I of VCSEL (oxide) vs. Annealing time

VCSEL radiation damage (2) VCSEL in proton radiation  less damaged with higher proton energy  conflict with NIEL calculations GaAs solar cell Srour, IEEE TNS 50, 653 (2003) VCSEL (GaAs) at I=10 mA

Radiation tests of commercial products QSFP, miniPOD, PPOD, ONET8501V, ONET1101L tested with X-ray or γ-ray, none meet the ATLAS LAr radiation requirement. Kintex 7, ONET8501 tested with a neutrons in Los Alamos SEU rate of Kintex 7 is too high for LAr. Vendor Part# Gbps # ch Rad type (krad/hr) TID (krad) QSFP Avago AFBR-79EIDZ 10 4 60Co  75 miniPOD AFBR-810FN1Z 1 x-ray 360 66 PPOD AFBR-810EPZ 12 150 VCSEL driver TI ONET8501V 39 178 F-P laser driver ONET1101L 9.6 464 < 900 Vendor Part# # of ch Flux (n/cm2/s) Fluence (n/cm2) # errors  (cm2) Kintex-7 Xilinx XC7K325TFFG900 16 (2 tested) 4.6E5 2.1E11 4/4 (2 shared) 1.6E-11 VCSEL driver TI ONET8501V 1 < 5E-12 SMU, TWEPP2012

sTGC router transceiver, choices 1. Use VCSEL in TOSA 850 nm, MM, 10 GHz  no fiber alignment issue, TOSA takes LC fiber connecter production is plainly PCB SMD process 2. Choice of GBLD or LOCld drivers 3. Joint Optical project of Phase-I LAr+NSW ? Requires approval LAr MTX is rad-hard, up to 8 Gbps (Xcheck?) LAr requires 5000 lines sTGC router is satisfied? Total 800 lines only QA, no R&D required Test fanout board, SMA to I/O e.g. Kintex7, Scope SMU MTX module

Preparations Manufacturers in contact 1. Liverag.com.tw 2. FOCI.com.tw Expertise on active optical products Capable of >10Gbps modules, QA, circuits 2. FOCI.com.tw Expertise on passive fiber assemblies Jointly with SMU, a visit to manufacturers is planned in early October  seeking all kind of collaboration opportunities and cost estimation Laboratory setup Bench test, scope for 10 GHz eye diagram Bit Error Rate using Kintex7 board Radiation tests, Co60 gamma, proton 30 MeV

Summary Propose to choose from LAr optical link options  using the same transceiver  joint fabrication options Double check on LAr products  to quickly build up coherent expertise  work out router board protocol and functions