Overview and perspectives of HR&HV CMOS

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

HV/HR-CMOS sensors (A quick overview from personal perspective, which is biased on ATLAS strips work) V. Fadeyev SCIPP / UCSC SiD mtg at SLAC,
Trapping in silicon detectors G. Kramberger Jožef Stefan Institute, Ljubljana Slovenia G. Kramberger, Trapping in silicon detectors, Aug , 2006,
Studies and status of CMOS-based sensors research and development for ATLAS strip detector upgrade 1 Vitaliy Fadeyev, Zach Galloway, Herve Grabas, Alexander.
Development of HV CMOS sensors for 3D integration
Charge collection studies on heavily diodes from RD50 multiplication run G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
CLICPix/CCPD/Mu3e (HVCMOS)
11 th RD50 Workshop, CERN Nov Results with thin and standard p-type detectors after heavy neutron irradiation G. Casse.
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
Medipix sensors included in MP wafers 2 To achieve good spatial resolution through efficient charge collection: Produced by Micron Semiconductor on n-in-p.
RD50 participation in HV-CMOS submissions G. Casse University of Liverpool V. Fadeyev Santa Cruz Institute for Particle Physics Santa Cruz, USA HV-CMOS.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
ALICE Inner Tracking System at present 2 2 layers of hybrid pixels (SPD) 2 layers of silicon drift detector (SDD) 2 layers of silicon strips (SSD) MAPs.
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Update on Simulation and Sensor procurement for CLICPix prototypes Mathieu Benoit.
AMS HVCMOS status Raimon Casanova Mohr 14/05/2015.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
10th Trento Workshop on Radiation Detectors HVCMOS Sensors for LHC Upgrade Felix Michael Ehrler, Robert Eber Daniel Münstermann, Branislav Ristic, Mathieu.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
TCT measurements with SCP slim edge strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko.
Development of DMAPS sensors M. Havránek*, T. Hemperek, H. Krüger, Y. Fu, T. Kishishita, T. Obermann, N. Wermes * Now at Czech Technical University (FNSPE)
Review of the ATLAS Silicon Detector R&D project work
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
Trends in MONOLITHIC DETECTORS and ADVANCED CMOS MANUFACTURING W. Snoeys ESE Seminar October 14 th 2014 PH-ESE-ME,
Ideas on MAPS design for ATLAS ITk. HV-MAPS challenges Fast signal Good signal over noise ratio (S/N). Radiation tolerance (various fluences) Resolution.
Hybrid CMOS strip detectors J. Dopke for the ATLAS strip CMOS group UK community meeting on CMOS sensors for particle tracking , Cosenors House,
Comparison of the AC and DC coupled pixels sensors read out with FE-I4 electronics Gianluigi Casse*, Marko Milovanovic, Paul Dervan, Ilya Tsurin 22/06/20161.
H.-G. Moser Max-Planck-Institut für Physik Future Vertex Detectors in HEP Projects: LHC (upgrade 2018+) Belle 2 (upgrade 2018+) ILC/CLIC (2020+)
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
TCT measurements with strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko Mikuž 1,2, Marko.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Investigation of the effects of thickness, pitch and manufacturer on charge multiplication properties of highly irradiated n-in-p FZ silicon strips A.
E-TCT measurements with laser beam directed parallel to strips Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Mikuž 1,2,
H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, R&D on monolithic and.
TCT measurements of HV-CMOS test structures irradiated with neutrons I. Mandić 1, G. Kramberger 1, V. Cindro 1, A. Gorišek 1, B. Hiti 1, M. Mikuž 1,2,
Alternative tracking technologies: Depleted CMOS Marcos Fernández García IFCA-CSIC & Departamento de Física Moderna (Universidad de Cantabria) [also visiting.
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Status of HVCMOS Developments.
Fully Depleted Low Power CMOS Detectors
Dima Maneuski, Advances in rad-hard MAPS 2016, Birmingham
The pixel research activities at SDU
Ivan Peric, Christian Kreidl, Peter Fischer University of Heidelberg
LePIX: first results from a novel monolithic pixel sensor
10-12 April 2013, INFN-LNF, Frascati, Italy
Pixel front-end development
Development of HV/HR CMOS sensors for the ATLAS ITk
Introduction HV HR CMOS ATLAS R&D
FBK / INFN Roma, November , 17th 2009 G. Darbo - INFN / Genova
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
Charge collection studies with irradiated CMOS detectors
IBL Overview Darren Leung ~ 8/15/2013 ~ UW B305.
This is a test Preliminary study for a csa front-end in 180nm CMOS technology for Monolithic pixel sensors R. Ballabriga CERN, EP Department 1211 Geneva.
Sep th Hiroshima Xi’an Test-beam evaluation of newly developed n+-in-p planar pixel sensors aiming for use in high radiation environment.
Position Sensitive TCT Measurements with 3D-stc detectors
HV-MAPS Designs and Results I
HVCMOS sensor technology R&D
First results on irradiated OVERMOS1 HR CMOS for HEP applications
R. Casanova, E. Cavallaro, F. Forster, S. Grinstein, I. Peric,
TCAD Simulations of Silicon Detectors operating at High Fluences D
Ivan Peric for ATLAS and CLIC HVCMOS R&D and Mu3e Collaborations
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
CMOS Pixel Sensors for ILC Related Vertexing & Tracking Devices Christine Hu-Guo (on behalf of the PICSEL team of IPHC-Strasbourg) Contents Overview.
HVCMOS Detectors – Overview
Enhanced Lateral Drift (ELAD) sensors
3D sensors: status and plans for the ACTIVE project
R&D of CMOS pixel Shandong University
Why silicon detectors? Main characteristics of silicon detectors:
Presentation transcript:

Overview and perspectives of HR&HV CMOS Tomasz Hemperek

Sensor design parameters by example (NIEL) Overview Introduction Sensor design parameters by example (NIEL) Implementations and measurements hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Hybrid Pixel Detectors Depleted Monolithic Pixels Monolithic Pixels hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

? Monolithic CMOS Introduction STAR ALICE-LHC ILC ATLAS-LHC Requirements for inner pixel layers STAR ALICE-LHC ILC ATLAS-LHC ATLAS-HL-LHC Timing [ns] 200 000 20 000 350 25 Particle Rate [kHz/mm2] 100 10 250 1000 10000 Fluence [neq/cm2] > 1012 > 1013 1012 2x1015 2x1016 Ion. Dose [Mrad] > 0.3 0.7 0.4 80 >500 25 25 ? Monolithic CMOS 2x1015 2x1016 80 >500 hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Sensor Design Paramters Substrate doping concentration (resistivity) Maximum sensor bias voltage Geometry (thickness, fill-factor) 20um particle 3um 18um (epi) Worst case scenario! No acceptor removal (this is only simulation) Code: https://gitlab.cern.ch/TCADExamples/ChargeCollection hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Bias voltage influence Bias (NW) Resistivity: 10 Ohm-cm 0V (PW) 10 Ohm cm - no radiation Bias @ 1V 1013neq/cm2 1014neq/cm2 Classical MAPS hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Substrate doping concentration (resistivity) Resistivity: 2k Ohm-cm Bias @ 1V 1014neq/cm2 1015neq/cm2 scale hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Substrate doping concentration (resistivity) cd. Bias @ 20V 2k Ohm-cm Zoom 10 Ohm-cm 20V, 10 Ohm-cm, 1014neq/cm2 20V, 2kOhm-cm, 1014neq/cm2 hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Geometry/Fill Factor 10 Ohm-cm, 20V, 1014neq/cm2 2k Ohm-cm, 20V, 1014neq/cm2 20V, 2k Ohm-cm, 15%, 1014neq/cm2 20V, 2k Ohm-cm, 75%, 1014neq/cm2 hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Technology Overview AMS 350 nm AMS 180 nm LFoundry 150 nm Global Foundry 130 nm ESPROS 150 nm Toshiba 130 nm TowerJazz 180 nm STM 160 nm * IBM 130nm XFAB 180 nm ON Semiconductor 180 nm *see: S. Hitesh [P] hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Sensor performance hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Substrate Properties – TCT AMS 180 nm ~20 Ω-cm AMS 350 nm ~20 Ω-cm AMS 180 nm After 1015 neq all substrate materials behave similar Low resistivity material device performance biggest challenge is at ~1014 neq LF150 nm ~2k Ω-cm XFAB 180 nm ~100 Ω-cm Trapping? Igor Mandić, Jožef Stefan Institute, Ljubljana Slovenia 11th "Trento" Workshop, February, Paris, 2016 See:  Ivan Vila, “Application of …” hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Passive LFCMOS sensor prototype LFoundry 150 nm CMOS technology 2 k-cm p-type bulk, 8“ 100/300 µm thick, backside processed Bump bonded to the ATLAS FE-I4 Pixel size: 50 µm x 250 µm Matrix size: 16 x 36 pixels (1.8 mm x 4 mm) Bonn + MPI AC-coupled pixels Resistive bias 30 µm implants DC-coupled pixels Punch through bias 30 µm implants 30 µm 25 µm 20 µm 15 µm 300 µm CMOS foundries can do good planar sensors (8”). D.Pohl, (Bonn) D. Pohl (Bonn) 113 of 114 measured sensors have identical parameters hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Device performance hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Bulk process options (simple options, n-on-p) p-substrate Deep n-well P+ p-well Charge signal Electronics (full CMOS) nw p-substrate n+ p-well Charge signal Electronics (full CMOS) nw deep p-well - - Electronics inside charge collection well Collection node with large fill factor  rad. hard Large sensor capacitance (DNW/PW junction!)  x-talk, noise & speed (power) penalties Full CMOS with isolation between NW and DNW Electronics outside charge collection well Very small sensor capacitance  low power Potentially less rad. hard (longer drift lengths) Full CMOS with additional deep-p implant hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Consequences of the additional inter-well capacitance larger total detector capacitance: Cd = Cd’ + Cpw noise timing cross talking into sensor The PW/DNW capacitance Cpw directly couples into the sensor (the CSA imput node). Even with careful layout and low noise digital circuitry the operation threshold can be affected. For example: for Cpw = 100 fF, ΔVpw = 1mV => Qx-talk = 625 e— need to increase gm to compensate => increased power (gm ∝ Id) hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Readout concepts Hybridize pixel CSA CMP READOUT TH data periphery Hybridize Lower input capacitance and reduce crosstalk noise Overcome limitations of some technologies CSA TH CMP READOUT data pixel periphery CSA TH CMP READOUT data pixel periphery hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

with CMOS planar sensor Configurations CMOS Active Hybrid Depleted Monolithic Standard Hybrid Planar Pixel Sensor CMOS Active Pixel Sensor with CMOS planar sensor Bumped or glued hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

CMOS Devices Performance hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

AMS 180nm/350nm Substrate: 10 (initially) – 2k Ohm-cm Bias: >60 – 100 V 180nm/350nm 3-6 metal layers KIT, Geneva, Barcelona, Liverpool, CCPM, CERN, Bonn , .. Branislav Ristic - HSTD10 Initially low resistive substrate now also high Initially no PMOS isolation now also available I. Peric et al. Nucl.Instrum.Meth. A582 (2007) 876-885 Nucl.Instrum.Meth. A765 (2014) 172-176 hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

AMS 180 – MuPix - Mu3e @ PSI MuPix7 Technology: AMS 180nm Dimension: 40 x 32 pixels ( 103 x 80 μm2 each) Preamplifier Inside pixel cell Bias: 85V Substrate 20 Ohm-cm (initially) MuPix7 Dirk Wiedner, VCI2016 see: F. Meier Aeschbache, ”MuPix7 …” hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Different pulse shapes AMS 180 - CCPDv4 Technology: AMS 180nm Dimension:  24 x 36 pixels ( 125x 33μm2 each) Bias: > 60V Substrate: 20 Ohm-cm + TOT = sub pixel address Readout pixel Size: 50 µm x 250 µm Size: 33 µm x 125 µm Different pulse shapes CCPDv1 CCPDv2 CCPDv3 CCPDv4 see I.Peric, “Status of HVCMOS …” hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

AMS 180 - CCPDv4 - Efficiency 99.7% Thresh = 0.870V Bias [V] Bias [V] High detection efficiency after 1015neq Large monolithic design in preparation in AMS180. see I.Peric, “Status of HVCMOS …” Timing [25ns bins] hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

AMS 350 demonstrator (H35DEMO) 4 resistivity : 20Ωcm (standard), 80Ωcm, 200Ωcm, 1kΩcm Device types: Standalone nMOS matrix Analog matrix Standalone CMOS matrix (monolithic) Demonstrated Bias up to 160V Full readout + control in preparation for summer test beams Irradiation campaign ongoing up to 1.5e15neq/cm2 First TCT Results on 200 Ohm-cm substrate agree well with TCAD simulations Edge TCT of H35DEMO Pixel 200Ohmcm Pixel active on full length, 20-30um depletion Mathieu Benoit (UniGe) see: I.Peric, “Status of HVCMOS …” E. Vielella Figuras [P] A. Calandri [P] Strip development: CHESS-1, CHESS-2, … hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

LFoundry LF150 24 x 114 pixels 5x5 mm2 LFA150: L-Foundry 150 nm process (deep N-well/P-well) Up to 7 metal layers Resistivity of wafer: >2000 Ω·cm Small implant customization Backside processing CCPD_LF prototype: Pixel size: 33um x 125 µm (6 pix =2 pix of FEI4) Chip size: 5 mm x 5 mm (24 x 114 pix) Bondable to FEI4 (+pixel encoding) 300um and 100um version Bonn + CCPM +KIT 5x5 mm2 24 x 114 pixels P. Rymaszewski et al., JINST 11 (2016) 02 C02045 T. Hirono et al., doi:10.1016/j.nima.2016.01.088 hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

CCPD_LF TID Leakage current 50MRad hemperek@uni-bonn.de pre-rad 1015neq/cm2 T.Hirono (Bonn) Normal (L=0.9um) Long (L=1.5um) Enclosed Layout (ELT) T.Hirono (Bonn) hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

CCPD_LF results MIP (3.2 GeV) spectrum (before radiation) Sepctrum of 55Fe and 241Am after 1015neq/cm2 ~130µm depletion T.Hirono (Bonn) Collection with (edge-TCT) T.Hirono (Bonn) I. Mandic, B. Hiti (Ljubljana) 1015neq/cm2 hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

LF-CPIX (Demonstrator) LFoundry timeline 1cm Bonn, CPPM ,IRFU Monopix (Aug. 2016) 0.5 cm LF-CPIX (Demonstrator) 0.5 cm 1cm SLAC COOL (Aug. 2016) Bonn, CPPM ,IRFU LF-CPIX (April 2016) Bonn, CPPM ,KIT CCPD_LF, ..(Aug. 2014) KIT, Liverpool, Barcelona, Geneva (Aug. 2016) hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Logic outside collecting well hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

ESPROS Photonic CMOS™ OHC15L 150 nm process (deep N-well/P-well) Up to 7 metal layers Resistivity of wafer (n-type): >2000 Ω·cm Backside processing 50um thin Design: Bonn, Prag* Chip size: 1.4×1.4 mm2 M. Havránek et al. JINST 10 (2015) 02, P02013 hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

EPCB01  FWHM = 120 e In pixel efficiency Fe55 spectrum Calibrated single hit cluster spectrum Sr90:  FWHM = 120 e T. Obermann (Bonn) In pixel efficiency Fluence: 0 𝒏 𝒆𝒒 Bias: 7V Fluence: 1E14 𝒏 𝒆𝒒 Bias: 9V Fluence: 5E14 𝒏 𝒆𝒒 Bias: 9V hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

TowerJazz TowerJazz 180 nm CMOS CIS Deep Pwell allows full CMOS in pixel Gate oxide 3 nm good for TID Thickness: 18 – 40 µm High resistivity: 1 – 8 k Ohm-cm Reverse substrate bias Modified process to improve lateral depletion Derived from ALICE development (CERN) see: Miljenko Suljic „ALPIDE: the ” 50 µm Pixel dimensions: 50x50um pixel size 3 µm diameter electrodes and 40um Pwell opening 25um EPI layer The pixels have a measured capacitance <5fF (approximately factor 20 less than large fill-factor pixel) With this low capacitance, simulations indicate a front end similar to the one in the ALPIDE but compatible with 25 ns timing would consume ~ 200 nA) 40 µm C. Gao et al., NIM A (2016) 831 3 µm hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Signal collection for small electrodes Normally small electrodes produce weak fields under p-well and charge gets lost after irradiation This usually means that efficiency drops significantly towards pixel edges TJ modified its process to improve the efficiency after irradiation on pixel edges while keeping small capacitance which makes this in particularly interesting for fast charge collection after irradiation Pixel capacitance without process modification ~ 2-3fF with modification <5fC Modified process Bias= – 6V Bias= – 6V Mean = 16.7ns s = 1.9 ns Sr90 amplitude [mV] hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Neutron irradiation to 1014 and 1015 n/cm2 Investigator irradiated by IJS Ljubljana in several steps up to 1015 Irradiations up to 1016 ongoing This detector has received NIEL 1015 n/cm2 and 1Mrad TID First test beam measurements indicate no efficiency loss on pixel boundaries after 1015 neq 55Fe source 90Sr source little change to signal (and capacitance !) after irradiation, -1 V is sufficient to observe a clear signal hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Signal versus collection time Plot calibrated signal versus charge collection time Better timing with modified process (narrower collection time distribution) Standard cell Modified process Modified process after irradiation maintains charge collectionv Modified Process irradiated 1015 n/cm2 Modified Process irradiated 1014 n/cm2 hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

SOI FD-SOI HV-SOI see: S. Bugiel, “The performance …” + + + see: S. Bugiel, “The performance …” A. Takeda, ”Design and Development …” R. Hashimoto, “Evaluation of” hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

XFAB XT180 XT180: XFab 180 nm HV-SOI Up to 7 metal layers Resistivity of wafer: 100 Ω·cm XTB01 and XT02 prototypes: Pixel pitch: 15, 50, 100um Chip size: 2.5 mm x 5 mm Design/Testing: Bonn, CERN, CPPM Sonia Fernandez-Perez et al. NIM A796 (2015) 13-18 Hemperek et al. JINST 10 (2015) no.03, C03047 hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Transistors threshold shift (TID) HV-SOI Transistors threshold shift (TID) 700Mrad NMOS Leakage current (v1) PMOS fluence hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

HV-SOI cd. Collection with (edge-TCT) (v2) 1015neq/cm2 I. Mandic, B. Hiti (Ljubljana) Sepctrum of 55Fe and 90Sr before and after 5x1014neq/cm2 hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Conclusions Lots of encouraging results (high interest and large momentum in R&D) Proven good radiation tolerance of sensors (and electronics) Main asset for p-p HEP: Low(er) cost alternative to conventional hybrid sensors (as monolithic or cheaper hybrid) Coupling smart sensor and R/O chip can increase performance of hybrid sensors (e.g. position decoding) Main asset for X-ray Imaging: Alternative to Fully Depleted CCD Increase performance of hybrid detectors (smaller pixels) Ongoing: Large (fully monolithic) devices Fast timing measurements hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

CMOS Pixel Collaboration ~20 ATLAS ITK institutions hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Backup

Noise AC couples pixels: (133 ± 1) e- DC couples pixels: (117 ± 1) e- electrons AC couples pixels: (133 ± 1) e- DC couples pixels: (117 ± 1) e- IBL n-in-n planar pixel: ~ 120 e- @ 117 fF input capacitance IBL 3D pixel: ~ 150 e- @ 180 fF  AC pixels: > 120 fF, < 180 fF; DC pixels: < 120 fF First design: AC coupling R / C values and poly-silicon layer location not optimized! Setup Threshold scan in pyBAR Bias voltage: 150 V FE-I4 direct powering hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Passive LFCMOS sensor prototype LFoundry 150 nm CMOS technology 2 k-cm p-type bulk, 8“ 300 µm thick, backside processed Bump bonded to the ATLAS FE-I4 Pixel size: 50 µm x 250 µm Matrix size: 16 x 36 pixels (1.8 mm x 4 mm) Bonn + MPI AC-coupled pixels Resistive bias 30 µm implants DC-coupled pixels Punch through bias 30 µm implants 30 µm 25 µm 20 µm 15 µm n-implant widths: [30, 25, 20, 15] µm 30 µm 25 µm 20 µm 15 µm hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Yield/Reliability 113 IV curves of the 300 µm LFoundry passive sensors Breakdows at „bias dot”, DC version J. Segal (SLAC) 113 IV curves of the 300 µm LFoundry passive sensors 1 has short hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Pixel Encoding Readout of CCPD_LF and FEI4 ToT response of 3 CCPD_LF pixels hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Monolithic Deep Depletion CMOS Image Sensor hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

STAR Experiment Ladders with 10 MAPS sensors (approx. 2×2 cm each) Ultimate Reticle size (2x2 cm²) Pixel pitch 20.7 µm Array size: 928 x 960 Integration time: 185.6 µs In pixel CDS Sensors thinned to 50 µm High Res Si option Technology: AMS 0.35u Design: IPHC Ladders with 10 MAPS sensors (approx. 2×2 cm each) see: Giacomo Contin, “The STAR Pixel detector “ hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Trapping in irradiated silicon (NIEL) RD50 Need to be as fast as possible! hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Small depletion zone  large DNW/PW capacitance Detector Capacitance Small depletion zone  large DNW/PW capacitance p-SUB DNW P+ PW Csub d Cpw d´ Cn NW Large Fill Factor collecting node has a double junction: DNW/SUB and DNW/PW Backplane capacitance Csub (DNW to substrate) Depends on depletion depth (substrate resistivity, bias voltage) Inter-pixel capacitance Cn Depends on fill factor and p-implant (‘p-stop’) geometry DNW to P-well capacitance Cpw Depends on electronics circuit area and DNW/PW junction width same as for std. Hybrid Pixels additional capacitance for Active Pixels  hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

LF Noise hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

TowerJazz 180nm Investigator Designed as part of the ALPIDE development for the ALICE ITS upgrade Emphasis is on small fill-factor and small capacitance Small capacitance enables low analog power designs (and material reduction in consequence) The pixels have a measured capacitance <5fF (approximately factor 20 less than large fill-factor pixel) C. Gao et al., NIM A (2016) 831 http://www.sciencedirect.com/science/article/pii/S0168900216300985 50um Pixel dimensions for these measurements: 50x50um pixel size 3 µm diameter electrodes and 40um Pwell opening 25um EPI layer 40 µm Design: C. Gao, P. Yang, C. Marin Tobon, J. Rousset, T. Kugathasan and W. Snoeys Measurements: C. Riegel, D. Schaefer, E. Schioppa, H. Pernegger, J. Van Hoorne 3 µm hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante

Impact of smaller capacitance Reducing the detector capacitance increases amplitude and faster signal, therefore less amplification is necessary This can be used to reduce power consumption (and therefore services and cooling material) Alpide front end D. Kim et al. TWEPP 2015 0.25fF ~ 300 mV 2.5fF Increased current in a similar front end from 20nA (Alpide) to 200 nA (= 50 mW/cm2 for 28 μm pitch) and varied detector capacitance between 0.25 fF, 2.5 fF and 25 fF. For 2.5 fF compatible with 25 ns timing. OUT_A 25fF 25fF 0.25fF 2.5fF OUT_D hemperek@uni-bonn.de PIXEL 2016 @ Sestri Levante 10 ns 20 ns