Low Alpha Operation at Diamond

Slides:



Advertisements
Similar presentations
Low Alpha & CSR in the MLS (PTB) G. Wüstefeld (BESSY) et al, ESLS XVI, Daresbury, Nov 28th Low Alpha Optics and Coherent Synchrotron Radiation.
Advertisements

Temporal Characteristics of CSR Emitted in Storage Rings – Observations and a Simple Theoretical Model P. Kuske, BESSY „Topics in Coherent Synchrotron.
J. Feikes, HZB (Berlin, Germany) The Metrology Light Source, ESLS XXII,Grenoble, France November 2014 The Metrology Light Source - Status Jörg Feikes,
A Resonant, THz Slab- Symmetric Dielectric-Based Accelerator R. B. Yoder and J. B. Rosenzweig Neptune Lab, UCLA ICFA Advanced Accelerator Workshop Sardinia,
Measurements of adiabatic dual rf capture in the SIS 18 O. Chorniy.
1 BROOKHAVEN SCIENCE ASSOCIATES Stephen Kramer, VUV Ring Manager CSR Emission Studies in VUV/IR Ring NSLS.
Short bunches in SPEAR J. Safranek for the SPEAR3 accelerator group November 2, 20101J. Safranek CLS THz Workshop.
SPEAR3 short pulse development J. Safranek for the SSRL accelerator physics group* Outline: Timing mode fill patterns Short bunches –Low alpha Bunch length.
Dr. Zafer Nergiz Nigde University THE STATUS OF TURKISH LIGHT SOURCE.
Diamond and the UK new light source Chris Christou, X-band workshop, Cockcroft Institute, 1 st December 2008.
June 14th 2005 Accelerator Division Overview of ALBA D. Einfeld Vacuum Workshop Barcelona, 12 th -13 th September 2005 General 10 th September 2005.
H. Bartosik, K. Cornelis, A. Guerrero, B. Mikulek, G. Rumolo, Y. Papaphilippou, B. Salvant, E. Shaposhnikova June 16 th, 2011.
History and motivation for a high harmonic RF system in LHC E. Shaposhnikova With input from T. Argyropoulos, J.E. Muller and all participants.
Status of the Diamond Light Source R. Bartolini Diamond Light Source Ltd and John Adams Institute, University of Oxford ILCW CERN, Geneva, 20 th October.
Comparison between NLC, ILC and CLIC Damping Ring parameters May 8 th, 2007 CLIC Parameter working group Y. Papaphilippou.
05/05/2004Cyrille Thomas DIAMOND Storage Ring Optical and X-ray Diagnostics.
Recent Developments at Diamond Ian Martin On behalf of the Diamond Team Particle Accelerators and Beams Group Meeting Daresbury Laboratory 10 th April.
Main Bullet #1 Main Bullet #2 Main Bullet #3 Advances in Coherent Synchrotron Radiation at the Canadian Light Source Jack Bergstrom.
Elias Métral, LHC Beam Commissioning Working Group meeting, 08/06/2010 /191 SINGLE-BUNCH INSTABILITY STUDIES IN THE LHC AT 3.5 TeV/c Elias Métral, N. Mounet.
G. Wüstefeld (HZB, Berlin) et al., MLS Low- , Future Light Sources, March 5-9, 2012, Jefferson Lab, USA 1 A. Hoehl, R. Klein, R. Müller, G. Ulm PTB Berlin.
Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant EXPERIMENTAL STUDIES OF OPTICS SCHEMES AT CEBAF FOR SUPPRESSION OF COHERENT SYNCHROTRON.
Status of the Diamond Light Source upgrade EuCARD2 topical workshop Barcelona, 23 April 2015 R. Bartolini. A. Alekou, M. Apollonio, R. Fielder, I. Martin,
The SPS as a Damping Ring Test Facility for CLIC March 6 th, 2013 Yannis PAPAPHILIPPOU CERN CLIC Collaboration Working meeting.
Longitudinal Stability of Short Bunches at BESSY Peter Kuske, M. Abo-Bakr, W. Anders, J. Feikes, K. Holldack, U. Schade, G. Wüstefeld (BESSY) H.-W. Hübers.
Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy Effects of Impedance in Short Pulse Generation Using.
Example: Longitudinal single bunch effects Synchrotron tune spread Synchrotron phase shift Potential well distortion Energy spread widening (microwave.
Lessons Learned From the First Operation of the LCLS for Users Presented by Josef Frisch For the LCLS March 14, 2010.
Machine Operation and Studies at SSRF Wenzhi ZHANG Dec. 16, 2013 Spain.
What did we learn from TTF1 FEL? P. Castro (DESY).
X-band Based FEL proposal
Beam Instrumentation of CEPC Yue Junhui (岳军会) for the BI Group Accelerator Center, IHEP HF2014.
Coherent THz radiation source driven by pre-bunched electron beam
CSR-driven Single Bunch Instability P. Kuske, Helmholtz Zentrum Berlin ESLS XX, 19/20 November 2012, Berlin.
Coupled bunch Instabilities at ILC Damping Rings L. Wang SLAC ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 Cornell University Refer to.
J. Feikes, HZB (Berlin, Germany) Experimental Observations at the Metrology Light Source, LER15 Grenoble, France 15-17/9/15 Experimental observations at.
HEADTAIL simulation during the accelerating ramp in the PS S. Aumon - EPFL & CERN Acknowledgement to B. Salvant, G. Rumolo.
ESLS Workshop Nov 2015 MAX IV 3 GeV Ring Commissioning Pedro F. Tavares & Åke Andersson, on behalf of the whole MAX IV team.
XXIII European Synchrotron Light Source Workshop, November 2015 Eirini Koukovini-Platia Diamond Light Source Collective effects at Diamond Experimental.
Eirini Koukovini-Platia Diamond Light Source Impedance and Beam Dynamics Studies at Diamond Light Source Acknowledgements M. Apollonio, R. Bartolini, L.
Status of the Diamond Light Source
Dielectric Wakefield R&D programme at Daresbury Lab.
Loss of Landau damping for reactive impedance and a double RF system
Diamond Light Source Status and Future Challanges
Sara Thorin, MAX IV Laboratory
Bocheng Jiang SSRF AP group
Ion Trapping Experiments and Single Kicker Injection Studies
T. Agoh (KEK) Introduction CSR emitted in wiggler
Longitudinal impedance of the SPS
R. Bartolini Diamond Light Source and
Theoretical Results for the CSR-driven Instability with
Test of Optical Stochastic Cooling in CESR
Longitudinal beam parameters and stability
Machine parameters of SuperKEKB
Multibunch instabilities from TMBF data at Diamond
A. Al-khateeb, O. Chorniy, R. Hasse, V. Kornilov, O. Boine-F
Cavity-beam interaction and Longitudinal beam dynamics for CEPC DR&APDR 宫殿君
Conveners: L.Serafini,F. Villa
Machine Operation and Progresses in SSRF
R. Bartolini Diamond Light Source Ltd
E. Métral, G. Rumolo, R. Tomás (CERN Switzerland), B
CEPC Injector Damping Ring
Operation Progress and Upgrade in SSRF
LHC impedance: Comparison between phase 1 and IR3MBC – follow-up
PETRA IV System design concept Old and new machine
SPS-DQW HOM Measurements
SPPC Longitudinal Dynamics
Damping Ring parameters for the new accelerating structure
Kicker specifications for Damping Rings
Damping Ring parameters with reduced bunch charge
ESRF Experimental Contribution Towards Working Group Introduction
Presentation transcript:

Low Alpha Operation at Diamond Ian Martin R. Bartolini , G. Cinque, M. Frogley, A. Morgun, G. Rehm, C. Thomas, R. Walker XX European Synchrotron Light Source Workshop Helmholtz Zentrum Berlin 20th November 2012

Talk Outline Low Alpha Lattice Instability Threshold Studies Optics / Main parameters Instability Threshold Studies Mm-wave port, Schottky Barrier Diodes Measured spectrograms / bursting thresholds / comparison with theory Differences for positive / negative alpha operation Differences for single bunch / multi-bunch operation Low Alpha for Users Modes of operation / how we operate Machine performance / Beamline data Conclusions Low Alpha Lattice Optics / Main parameters Instability Threshold Studies Mm-wave port, Schottky Barrier Diodes Measured spectrograms / bursting thresholds / comparison with theory Differences for positive / negative alpha operation Differences for single bunch / multi-bunch operation Low Alpha for Users Modes of operation / how we operate Machine performance / Beamline data Conclusions Ian Martin ESLS XX, HZB, 20th Nov 2012

Lattice user low alpha Ian Martin ESLS XX, HZB, 20th Nov 2012

Lattice Parameter Standard User Lattice Low Alpha Lattice Emittance 2.7nm.rad 4.4nm.rad α1 1.7×10-4 -1×10-5 α2 (with/without sext.) 1.7×10-3 / 5.1×10-3 -2×10-5 / 0.005 α3 (with/without sext.) -1.4×10-4 / 0.051 0.004 / 0.008 Tune point (Qx / Qy) 27.205 / 12.360 29.390 / 8.284 Natural chromaticity (ξx0 / ξy0) -79 / -35 -66 / -43 σx / σy at IDs (0.2% coupling) 124μm / 2.9μm 94μm / 7.0μm Energy spread 9.62×10-4 Damping times (hor. / long.) 11.2ms / 5.6ms Natural bunch length (3MV) 10.0ps 2.4ps Synchrotron frequency (3MV) 2608Hz 629Hz Ian Martin ESLS XX, HZB, 20th Nov 2012

Talk Outline Low Alpha Lattice Instability Threshold Studies Optics / Main parameters Instability Threshold Studies Mm-wave port, Schottky Barrier Diodes Measured spectrograms / bursting thresholds / comparison with theory Differences for positive / negative alpha operation Differences for single bunch / multi-bunch operation Low Alpha for Users Modes of operation / how we operate Machine performance / Beamline data Conclusions Ian Martin ESLS XX, HZB, 20th Nov 2012

Schottky Barrier Diodes 60-90GHz SBD 60-90 GHz 220-300 GHz Sensitivity 28 V/W 1500 V/W Response Time <250 ps ~1 μs Measurement Bandwidth >4 GHz ~1 MHz Pre-amp input impedance 50 Ω 100 kΩ Pre-amp gain 60 dB 40 dB 220-300GHz SBD Ian Martin ESLS XX, HZB, 20th Nov 2012

mm-wave beam port Installed during Dec 2011 shutdown Increased power measured by SBD by factor ~3-4 Ian Martin ESLS XX, HZB, 20th Nov 2012

Positive Alpha (4 Bunches) α1 = +1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 81.1µA α1 = +1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 97.2µA α1 = +1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 8.5µA α1 = +1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 63.0µA α1 = +1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 21.9µA α1 = +1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 45.0µA α1 = +1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 30.8µA α1 = +1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 37.7µA Instability threshold Ian Martin ESLS XX, HZB, 20th Nov 2012

Instability Thresholds Free-space CSR theory: α1 > 0 Stupakov, Heifets, PRST-AB 5, 054402 (2002) Byrd et al., PRL 89, 224801 (2002) Ian Martin ESLS XX, HZB, 20th Nov 2012

Instability Thresholds Shielded CSR theory: α1 > 0 From VFP simulations: From free-space CSR theory: Bane, Cai, Stupakov, PRST-AB 13, 104402 (2010) Wuestefeld et al., IPAC 2010, p. 2504 (2010) Cai, IPAC 2011, p. 3774, (2011) Ries et al., IPAC 2012, p. 3030 (2012) Ian Martin ESLS XX, HZB, 20th Nov 2012

Negative Alpha (1 Bunch) α1 = -1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 8.3µA α1 = -1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 60.7µA α1 = -1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 49.3µA α1 = -1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 55.5µA α1 = -1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 40.8µA α1 = -1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 18.4µA α1 = -1×10-5 VRF = 3.4MV fs0 = 675Hz Ibunch = 33.0µA Bursting threshold Instability threshold Ian Martin ESLS XX, HZB, 20th Nov 2012

Instability Thresholds Instability threshold data Free-space CSR theory: α1 < 0 Stupakov, Heifets, PRST-AB 5, 054402 (2002) Byrd et al., PRL 89, 224801 (2002) Ian Martin ESLS XX, HZB, 20th Nov 2012

Instability Thresholds Bursting threshold data Free-space CSR theory: α1 < 0 Stupakov, Heifets, PRST-AB 5, 054402 (2002) Byrd et al., PRL 89, 224801 (2002) Ian Martin ESLS XX, HZB, 20th Nov 2012

Comparison Single/Multibunch α1 = -4.5x10-6 VRF = 3.4MV fs = 450Hz 1 bunch α1 = -4.5x10-6 VRF = 3.4MV fs = 450Hz 400 bunches Ian Martin ESLS XX, HZB, 20th Nov 2012

Comparison Single/Multibunch α1 = -4.5x10-6 VRF = 3.4MV fs = 450Hz 1 bunch α1 = -4.5x10-6 VRF = 3.4MV fs = 450Hz 400 bunches Ian Martin ESLS XX, HZB, 20th Nov 2012

Talk Outline Low Alpha Lattice Instability Threshold Studies Optics / Main parameters Instability Threshold Studies Mm-wave port, Schottky Barrier Diodes Measured spectrograms / bursting thresholds / comparison with theory Differences for positive / negative alpha operation Differences for single bunch / multi-bunch operation Low Alpha for Users Modes of operation / how we operate Machine performance / Beamline data Conclusions Ian Martin ESLS XX, HZB, 20th Nov 2012

User Requirements NANOSCIENCE (I06) for short pulses 2 helical undulators Use single bunch for time-resolved science Preference for higher bunch charge over shortest absolute pulse duration (no benefit for reducing alpha) Request stable beam (higher alpha for transverse stability and below bursting threshold) MIRIAM (B22) for THz emission Requirements depends on particular users and region of spectrum required Can make use of beam in short pulse mode, but some experiments require CSR emission up to 100cm-1 => need to operate above bursting threshold Ian Martin ESLS XX, HZB, 20th Nov 2012

Lattice Parameters Short Pulse Mode THz Mode α1 -1×10-5 -4.5×10-6 Number of bunches 400 + 1 200 Bunch current 50 µA (93 pC) Emittance coupling ratio 0.3% 1% Lifetime ~20h Injection efficiency (IDs open) 30-40% 15-20% VRF 3.4MV Micro-bunching instability threshold (SB) ~30-35 µA ~15 µA Bursting threshold (SB) ~55-60 µA ~25-30 µA Ian Martin ESLS XX, HZB, 20th Nov 2012

Why negative alpha? Negative alpha operation benefits both short pulse and THz users: Bunch lengthening with current reduced ‘Sharper’ longitudinal profile Measured instability thresholds similar α1 = -1x10-5 VRF = 1.5MV Ibunch = 25µA α1 = +1x10-5 VRF = 1.5MV Ibunch = 25µA α1 = +1x10-5 / 1.5MV α1 = -1x10-5 / 1.5MV Ian Martin ESLS XX, HZB, 20th Nov 2012

Bunch Length Target bunch current same for both modes Ian Martin ESLS XX, HZB, 20th Nov 2012

Short Pulse Mode 19/07/2012 20/07/2012 Requested beam fill Ian Martin ESLS XX, HZB, 20th Nov 2012

MIRIAM (B22) Spectrum Courtesy G. Cinque 03/10/2012 04/10/2012 05/10/2012 Courtesy G. Cinque Ian Martin ESLS XX, HZB, 20th Nov 2012

THz Mode 03/10/2012 04/10/2012 05/10/2012 Beam trip Data acquisition paused Mirror adjusted Ian Martin ESLS XX, HZB, 20th Nov 2012

Talk Outline Low Alpha Lattices Instability Threshold Studies Optics / Main parameters Instability Threshold Studies Mm-wave port, Schottky Barrier Diodes Measured spectrograms / bursting thresholds / comparison with theory Differences for positive / negative alpha operation Differences for single bunch / multi-bunch operation Low Alpha for Users Modes of operation / how we operate Machine performance / Beamline data Conclusions Ian Martin ESLS XX, HZB, 20th Nov 2012

Conclusions User operations: Main issues now well understood Two lattices tailored to suit needs of individual beamlines Reliable, ‘stable’ operation demonstrated for last couple of years Top-up and FOFB big help in delivering this Physics studies: Strikingly different behaviour for positive / negative alpha (more investigations needed) Earlier onset of instabilities in multi-bunch; bunches do not need to be adjacent in order to have measurable influence on neighbours Still much to do: Need better understanding of how different types of wakefield influence bunch Develop an effective model that reproduces measured behaviour Ian Martin ESLS XX, HZB, 20th Nov 2012

Ian Martin ESLS XX, HZB, 20th Nov 2012

No instabilities visible on either detector at higher frequencies 60-90GHz detector 220-300GHz detector No instabilities visible on either detector at higher frequencies (VRF = 3.4MV, α1 = -1×10-5) Ian Martin ESLS XX, HZB, 20th Nov 2012

α1=-0.3x10-5 / VRF=1.5MV α1=-0.3x10-5 / VRF=2.2MV α1=-0.3x10-5 / VRF=3.4MV α1=-0.3x10-5 / VRF=4.0MV

α1=-0.6x10-5 / VRF=1.5MV α1=-0.6x10-5 / VRF=2.2MV α1=-0.6x10-5 / VRF=3.4MV α1=-0.6x10-5 / VRF=4.0MV

α1=-1.0x10-5 / VRF=1.5MV α1=-1.0x10-5 / VRF=2.2MV α1=-1.0x10-5 / VRF=3.4MV α1=-1.0x10-5 / VRF=4.0MV

α1=-1.4x10-5 / VRF=1.5MV α1=-1.4x10-5 / VRF=2.2MV α1=-1.4x10-5 / VRF=3.4MV α1=-1.4x10-5 / VRF=4.0MV

α1= 0.3x10-5 / VRF=1.5MV α1= 0.3x10-5 / VRF=2.2MV α1= 0.3x10-5 / VRF=3.4MV α1= 0.3x10-5 / VRF=4.0MV

α1= 0.6x10-5 / VRF=1.5MV α1= 0.6x10-5 / VRF=2.2MV α1= 0.6x10-5 / VRF=3.4MV α1= 0.6x10-5 / VRF=4.0MV

α1= 1.0x10-5 / VRF=1.5MV α1= 1.0x10-5 / VRF=2.2MV α1= 1.0x10-5 / VRF=3.4MV α1= 1.0x10-5 / VRF=4.0MV

α1= 1.4x10-5 / VRF=1.5MV α1= 1.4x10-5 / VRF=2.2MV α1= 1.4x10-5 / VRF=3.4MV α1= 1.4x10-5 / VRF=4.0MV

Talk Outline α1 = +1×10-5 VRF = 3.4MV fs0 = 675Hz Gap = 0 α1 = +1×10-5 α1 = +1×10-5 VRF = 3.4MV fs0 = 675Hz Gap = 0 α1 = +1×10-5 VRF = 3.4MV fs0 = 675Hz Gap = 1 α1 = +1×10-5 VRF = 3.4MV fs0 = 675Hz Gap = 9 α1 = +1×10-5 VRF = 3.4MV fs0 = 675Hz Gap = 4 Ian Martin ESLS XX, HZB, 20th Nov 2012

(VRF = 3.4MV, α1 = -1×10-5) quadratic linear Ian Martin ESLS XX, HZB, 20th Nov 2012