Measurement of Nitrogen Hyperfine Structure On The 53 cm (562 MHz) Butyronitrile Line Christopher T. Dewberry, Garry S. Grubbs II, Andrew Raphelt, and Stephen A. Cooke
Salad Bowls Preliminary Test
Low Frequency Circuit # 10, Low Noise Amplifier: Lucix S001040L4501 (1 – 4 GHz, gain 45 dB, noise figure 1.5 dB) Miteq AMF-6F-00100400-10-10P (0.1 – 4 GHz, gain 65 dB, noise figure 1dB) K. C. Etchison et al., Journal of Molecular Spectroscopy, 242, 39-45 (2007).
Other Work Bromobenzene 10000 Shots Tuned to 1814.6 MHz 10-15-2006 Iodobenzene 5002 Shots Tuned to 1130.7 MHz 10-18-2006 Methanol 22561 Shots Tuned to 834.4 MHz 10-8-2007
Previous Studies Gauche Butyronitrile E. Hirota, J. Chem. Phys. 37, 2918 (1962). K. Vormann and H. Dreizler, Z. Naturforsch. 43a, 338-344 (1988).
1st Look at Butyronitrile 2421 Shots Tuned to 562.2 26724 Shots Tuned to 562.4 MHz
Getting Low 5500 Shots Tuned to 562.2 MHz Old Amp at 15V
Different Amp 4000 Shots Tuned to 562.4 MHz New Amp at 11.15V
Voltage Test 51 Shots 9V 50 Shots 11V 50 Shots 10V 52 Shots 12V
12000 Shots Tuned to 562.4 MHz New Amp at 11.15V 10000 Shots Background Tuned to 562.4 MHz New Amp at 11.15V
Tried Out Perpendicular Orientation 10650 Shots Perpendicular Orientation 12000 Shots Coaxial Orientation
Chamber Microwave Test
Resulting Dead Zones Rough Two Dimensional Sketch when tuned to 562.4MHz
To A New Dimension
3-D Microwave Field Side View Backside View Top View
Different Antenna Size 14427 Shots Tuned to 562.4 MHz 3 1/8’’ Antenna 12403 Shots Tuned to 562.4 MHz 6’’ Antenna
Gauche Butyronitrile: Low Transitions
Gauche Butyronitrile: Rotational Constants K. Vormann, H. Dreizler, Z. Naturforsch. 43a, 338-344 (1988). A. Belloche et al., Astro-ph. Manuscript 11550 (2009).
The Next Step Conduct mathematical modeling of Microwave Field Determine a fit including quadrupole coupling constants and internal rotation
Wave of The Future Low Frequency 1-2 GHz Chirp Pulse Waveguide
Acknowledgements National Science Foundation (NSF) Dr. Steve Cooke, Andrew Raphelt, Kerry Etchison, and Garry “Smitty” Grubbs II
Trans Butyronitrile: Rotational Constants K. Vormann, H. Dreizler, Z. Naturforsch. 43a, 338-344 (1988). A. Belloche et al., Astro-ph. Manuscript 11550 (2009).
Previous Studies Gauche Butyronitrile Trans Butyronitrile E. Hirota, J. Chem. Phys. 37, 2918 (1962). K. Vormann and H. Dreizler, Z. Naturforsch. 43a, 338-344 (1988).
Measurement of Nitrogen Hyperfine Structure On The 53 cm (562 MHz) Butyronitrile Line Christopher T. Dewberry, Garry S. Grubbs II, Andrew Raphelt, and Stephen A. Cooke
Stuff To Do Put Salad Bowls in Solid Works Find Focal Point test for Antenna in old Notebooks Find Pics of Spectra, go through all spectra Make visual Appealing Results for Dead Zones Figure out Internal Rotation Add Chemical Stuff
Talk About Methanol (1 sentence) Explain Why B-Nitrile is interesting Explain Constants and why valid or internal rotation stuff
Hirota Paper Notes Dipole moments of Gauche: Uc2 is 1/13 the size of Ua2, so only a b type transitions assigned For Trans, K-1=2 is the best for seeing doubling (internal rotation?) Suspect that Gauche and trans energy difference is less than 1 kcal
Mollendal Paper Notes Anti(aka trans) is more stable than gauche by about 1.1 kJ/mol (At room temp and -40 Celsius In other studies of n-propyl frame the gauche was more stable (F, Cl, NC???, C=CH) Candidate for interstellar detection “bootstrapped” fitting? Couldn’t observe internal rotation or quadrupole coupling
Voltage Test Voltage Test 04-09-2009_00005SaladBowls_13V.dat 13/15 2:1 ~40 shots 04-09-2009_00006SaladBowls_12V.dat 12/15 2:1 ~20 shots 04-09-2009_00007SaladBowls_11V.dat 11/15 2:1 ~8 shots 04-09-2009_00008SaladBowls_10V.dat 10/15 >= 4:1 ~8 shots Little Messy 04-09-2009_00009SaladBowls_9V.dat 9/15 <= ~4:1 8 shots Very Messy 04-09-2009_00010SaladBowls_10_5V.dat 10.5/15 ~3:1 8 shots Slightly Messy
2421 Shots Tuned to 562.2
26724 Shots Tuned to 562.4
2421 Shots Tuned to 562.2
Another Background 3500 Shots
Molecules Trans B-Nitrile 4 200 -DJ -0.395910( 71)E-03 0.000000E-03 5 1100 -DJK 0.01082096( 93) 0.00000000 6 2000 -DK -0.239831( 78) 0.000000 7 40100 d1 -0.048332( 44)E-03 0.000000E-03 8 50000 d2 -0.4560( 59)E-06 0.0000E-06 9 300 HJ -0.0132(113)E-09 -0.0000E-09 10 1200 HJK -0.018964(203)E-06 0.000000E-06 11 2100 HKJ 0.36354(247)E-06 -0.00000E-06 12 3000 HK 3.12(170)E-06 -0.00E-06 13 40200 h1 0.5932(147)E-09 -0.0000E-09 14 110010000 Xaa -2.6164(196) 0.0000 15 110030000 Xcc 2.2500(101) -0.0000 MICROWAVE AVG = 0.004791 MHz, IR AVG = 0.00000 MICROWAVE RMS = 0.075994 MHz, IR RMS = 0.00000
Aluminum Rod
Marked Plastic Tubing
Moved Disturbance Device
Side Window View
Took Measurement
Testing Horizontal = 10’’ Vertical = 16’’ Control
Inside of Chamber
Antenna Orientation
Resulting Dead Zones
New 5’’ Antenna
Stuff To Do Put Salad Bowls in Solid Works Find Focal Point test for Antenna in old Notebooks Find Pics of Spectra, go through all spectra Make visual Appealing Results for Dead Zones Figure out Internal Rotation Add Chemical Stuff
Lowest Transition (561.29019 MHz)
Zoomed In
Other Work We’ve looked at Bromo-Benzene Iodo-Benzene Methanol (Give Pic of Gaussview and Spectrometer Pic and lowest Frequency) (Mention can only look at molecules in gas phase and volatile liquids)
Previous Studies Give Driezler Chart and finding and site and mention him specifically