Christopher T. Dewberry, Garry S

Slides:



Advertisements
Similar presentations
MICROWAVE SPECTRUM AND AB INITIO CALCULATIONS OF meta-CHLOROBENZALDEHYDE Sean Arnold, Jessica Garrett, & Dr. Gordon Brown Department of Science and Mathematics.
Advertisements

Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
AUSTIN L. MCJUNKINS, K. MICHELLE THOMAS, APRIL RUTHVEN, AND GORDON G. BROWN Department of Science and Mathematics, Coker College, 300 E College Ave., Hartsville,
MONITORING REACTION PRODUCTS USING CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY Derek S. Frank, Daniel A. Obenchain, Wei Lin, Stewart E. Novick,
Measurement of the Vibrational Population Distribution of Barium Sulfide, Seeded in an Argon Supersonic Expansion, Following Production Through the Reaction.
Electron Spin Resonance Spectroscopy
Microwave Rotational Spectroscopy
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
A FABRY-PERÓT CAVITY PULSED FOURIER TRANSFORM W-BAND SPECTROMETER WITH A PULSED NOZZLE SOURCE. GARRY S. GRUBBS II, CHRISTOPHER T. DEWBERRY AND STEPHEN.
PURE ROTATIONAL SPECTRA OF THE REACTION PRODUCTS OF LASER ABLATED THORIUM METAL AND OXYGEN MOLECULES ENTRAINED WITHIN SUPERSONIC EXPANSIONS OF NOBLE GASES.
Gas Phase Conformational Distributions
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Spectral Simplification Methods Development Using Waveguide Chirped-Pulse Fourier Transform Microwave Spectroscopy Erin Kent, Steven Shipman New College.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
CONFORMATIONS AND BARRIERS TO METHYL GROUP INTERNAL ROTATION IN TWO ASYMMETRIC ETHERS: PROPYL METHYL ETHER AND BUTYL METHYL ETHER. TC-06: June 19 th, 2012.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
Rotational Spectroscopy of OCS in Superfluid Helium Nanodroplets Paul Raston, Rudolf Lehnig, and Wolfgang Jäger Department of Chemistry, University of.
The Rotational Spectroscopy of SrS Kerry C. Etchison, Chris T. Dewberry and Stephen A. Cooke Department of Chemistry, University of North Texas P.O. Box.
Fast Sweeping Double Resonance Microwave - (sub)Millimeter Spectrometer Based on Chirped Pulse Technology Brian Hays 1, Susanna Widicus Weaver 1, Steve.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
The Common Chlorine Nuclear Electric Quadrupole Coupling Tensor for Acyl Chlorides R. A. Powoski and S. A. Cooke.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
Max Planck Institute for the Structure and Dynamics of Matter
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
The microwave spectroscopy study of 1,2-dimethoxyethane
Rotational Spectroscopy of the Lowest Energy Conformer of 2-Cyanobutane and Search for it in Sagittarius B2(N2) H. S. P. Müller, N. Wehres, O. Zingsheim,
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
Microwave and infrared spectra of urethane
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
The Pure Rotational Spectrum of KO
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
STEPHEN G. KUKOLICH, MING SUN, ADAM M. DALY University of Arizona
Stéphane Bailleux University of Lille
Characterisation and Control of Cold Chiral Compounds
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
MICROWAVE OBSERVATION OF THE VAN DER WAALS COMPLES O2-CO
The CP-FTMW Spectrum of Bromoperfluoroacetone
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
Chirped Pulse Microwave Spectroscopy on Methyl Butanoate
Tunneling Effects and Conformation Determination of The Polar Forms of 1,3,5 Trisilapentane Frank E. Marshalla, William Raymond Neal Tonksb , David Joseph.
H. S. P. Müller, N. Wehres, O. H. Wilkins, F. Lewen, S. Schlemmer,
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Rotational Spectra of H2S Dimer: Observation of Ka =1 Lines
Microwave spectra of 1- and 2-bromobutane
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
Millimeter-Wave Spectroscopy of Phenyl Isocyanate
Stéphane Bailleux Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation.
Fourier Transform Infrared Spectral
Fourier Transform Microwave Spectroscopy Of Sc13C2 and Sc12C13C: Establishing an Accurate Structure Of ScC2 (X2A1) ~ Sc C Mark A. Burton, DeWayne T. Halfen,
AN INVESTIGATION OF THE DIPOLE FORBIDDEN TRANSITION EFFECTS IN BROMOFLUOROCARBONS AS IT PERTAINS TO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE USING CP-FTMW.
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
ASSIGNMENT OF THE PERFLUOROPROPIONIC ACID-FORMIC ACID COMPLEX AND THE DIFFICULTIES OF INCLUDING HIGH Ka TRANSITIONS Daniel A. Obenchain, Eric A. Arsenault,
(Toho Univ.a, Univ. Toyamab)
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Measurement of Nitrogen Hyperfine Structure On The 53 cm (562 MHz) Butyronitrile Line Christopher T. Dewberry, Garry S. Grubbs II, Andrew Raphelt, and Stephen A. Cooke

Salad Bowls Preliminary Test

Low Frequency Circuit # 10, Low Noise Amplifier: Lucix S001040L4501 (1 – 4 GHz, gain 45 dB, noise figure 1.5 dB) Miteq AMF-6F-00100400-10-10P (0.1 – 4 GHz, gain 65 dB, noise figure 1dB) K. C. Etchison et al., Journal of Molecular Spectroscopy, 242, 39-45 (2007).

Other Work Bromobenzene 10000 Shots Tuned to 1814.6 MHz 10-15-2006 Iodobenzene 5002 Shots Tuned to 1130.7 MHz 10-18-2006 Methanol 22561 Shots Tuned to 834.4 MHz 10-8-2007

Previous Studies Gauche Butyronitrile E. Hirota, J. Chem. Phys. 37, 2918 (1962). K. Vormann and H. Dreizler, Z. Naturforsch. 43a, 338-344 (1988).

1st Look at Butyronitrile 2421 Shots Tuned to 562.2 26724 Shots Tuned to 562.4 MHz

Getting Low 5500 Shots Tuned to 562.2 MHz Old Amp at 15V

Different Amp 4000 Shots Tuned to 562.4 MHz New Amp at 11.15V

Voltage Test 51 Shots 9V 50 Shots 11V 50 Shots 10V 52 Shots 12V

12000 Shots Tuned to 562.4 MHz New Amp at 11.15V 10000 Shots Background Tuned to 562.4 MHz New Amp at 11.15V

Tried Out Perpendicular Orientation 10650 Shots Perpendicular Orientation 12000 Shots Coaxial Orientation

Chamber Microwave Test

Resulting Dead Zones Rough Two Dimensional Sketch when tuned to 562.4MHz

To A New Dimension

3-D Microwave Field Side View Backside View Top View

Different Antenna Size 14427 Shots Tuned to 562.4 MHz 3 1/8’’ Antenna 12403 Shots Tuned to 562.4 MHz 6’’ Antenna

Gauche Butyronitrile: Low Transitions

Gauche Butyronitrile: Rotational Constants K. Vormann, H. Dreizler, Z. Naturforsch. 43a, 338-344 (1988). A. Belloche et al., Astro-ph. Manuscript 11550 (2009).

The Next Step Conduct mathematical modeling of Microwave Field Determine a fit including quadrupole coupling constants and internal rotation

Wave of The Future Low Frequency 1-2 GHz Chirp Pulse Waveguide

Acknowledgements National Science Foundation (NSF) Dr. Steve Cooke, Andrew Raphelt, Kerry Etchison, and Garry “Smitty” Grubbs II

Trans Butyronitrile: Rotational Constants K. Vormann, H. Dreizler, Z. Naturforsch. 43a, 338-344 (1988). A. Belloche et al., Astro-ph. Manuscript 11550 (2009).

Previous Studies Gauche Butyronitrile Trans Butyronitrile E. Hirota, J. Chem. Phys. 37, 2918 (1962). K. Vormann and H. Dreizler, Z. Naturforsch. 43a, 338-344 (1988).

Measurement of Nitrogen Hyperfine Structure On The 53 cm (562 MHz) Butyronitrile Line Christopher T. Dewberry, Garry S. Grubbs II, Andrew Raphelt, and Stephen A. Cooke

Stuff To Do Put Salad Bowls in Solid Works Find Focal Point test for Antenna in old Notebooks Find Pics of Spectra, go through all spectra Make visual Appealing Results for Dead Zones Figure out Internal Rotation Add Chemical Stuff

Talk About Methanol (1 sentence) Explain Why B-Nitrile is interesting Explain Constants and why valid or internal rotation stuff

Hirota Paper Notes Dipole moments of Gauche: Uc2 is 1/13 the size of Ua2, so only a b type transitions assigned For Trans, K-1=2 is the best for seeing doubling (internal rotation?) Suspect that Gauche and trans energy difference is less than 1 kcal

Mollendal Paper Notes Anti(aka trans) is more stable than gauche by about 1.1 kJ/mol (At room temp and -40 Celsius In other studies of n-propyl frame the gauche was more stable (F, Cl, NC???, C=CH) Candidate for interstellar detection “bootstrapped” fitting? Couldn’t observe internal rotation or quadrupole coupling

Voltage Test Voltage Test 04-09-2009_00005SaladBowls_13V.dat 13/15 2:1 ~40 shots   04-09-2009_00006SaladBowls_12V.dat 12/15 2:1 ~20 shots 04-09-2009_00007SaladBowls_11V.dat 11/15 2:1 ~8 shots 04-09-2009_00008SaladBowls_10V.dat 10/15 >= 4:1 ~8 shots Little Messy 04-09-2009_00009SaladBowls_9V.dat 9/15 <= ~4:1 8 shots Very Messy 04-09-2009_00010SaladBowls_10_5V.dat 10.5/15 ~3:1 8 shots Slightly Messy  

2421 Shots Tuned to 562.2

26724 Shots Tuned to 562.4

2421 Shots Tuned to 562.2

Another Background 3500 Shots

Molecules Trans B-Nitrile 4 200 -DJ -0.395910( 71)E-03 0.000000E-03 5 1100 -DJK 0.01082096( 93) 0.00000000 6 2000 -DK -0.239831( 78) 0.000000 7 40100 d1 -0.048332( 44)E-03 0.000000E-03 8 50000 d2 -0.4560( 59)E-06 0.0000E-06 9 300 HJ -0.0132(113)E-09 -0.0000E-09 10 1200 HJK -0.018964(203)E-06 0.000000E-06 11 2100 HKJ 0.36354(247)E-06 -0.00000E-06 12 3000 HK 3.12(170)E-06 -0.00E-06 13 40200 h1 0.5932(147)E-09 -0.0000E-09 14 110010000 Xaa -2.6164(196) 0.0000 15 110030000 Xcc 2.2500(101) -0.0000 MICROWAVE AVG = 0.004791 MHz, IR AVG = 0.00000 MICROWAVE RMS = 0.075994 MHz, IR RMS = 0.00000

Aluminum Rod

Marked Plastic Tubing

Moved Disturbance Device

Side Window View

Took Measurement

Testing  Horizontal = 10’’ Vertical = 16’’ Control

Inside of Chamber

Antenna Orientation

Resulting Dead Zones

New 5’’ Antenna

Stuff To Do Put Salad Bowls in Solid Works Find Focal Point test for Antenna in old Notebooks Find Pics of Spectra, go through all spectra Make visual Appealing Results for Dead Zones Figure out Internal Rotation Add Chemical Stuff

Lowest Transition (561.29019 MHz)

Zoomed In

Other Work We’ve looked at Bromo-Benzene Iodo-Benzene Methanol (Give Pic of Gaussview and Spectrometer Pic and lowest Frequency) (Mention can only look at molecules in gas phase and volatile liquids)

Previous Studies Give Driezler Chart and finding and site and mention him specifically