Image © NPG Rogério de Sousa

Slides:



Advertisements
Similar presentations
Int. Conf. II-VI 2007 Coherent Raman spectroscopy of Cd 1-x Mn x Te quantum wells Lowenna Smith, Daniel Wolverson, Stephen Bingham and J. John Davies Department.
Advertisements

2Instituto de Ciencia de Materiales de Madrid,
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
DIFFERENT TYPES OF MAGNETIC MATERIAS (a) Diamagnetic materials and their properties  The diamagnetism is the phenomenon by which the induced magnetic.
Terahertz spectroscopy of electromagnons excitation in a hexaferrite Ba 2 Mg 2 Fe 12 O 22 Ashida Lab. Tadataka Saito Phy.Rev.B 83, (2011) Phy.Rev.
Physics “Advanced Electronic Structure” Lecture 7.2. Calculations of Magnetic Interactions Contents: 1.Non-collinear SDFT. 2.Applications to Magnetic.
Kris T. Delaney1, Maxim Mostovoy2, Nicola A. Spaldin3
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
Spin transport in spin-orbit coupled bands
DYNAMICAL PROPERTIES OF THE ANISOTROPIC TRIANGULAR QUANTUM
Optical spin transfer in GaAs:Mn Joaquin Fernandez-Rossier, Department of Applied Physics, University of Alicante (SPAIN) CECAM June 2003, Lyon (FR) cond-mat/
Optical study of Spintronics in III-V semiconductors
Magnetoresistive Random Access Memory (MRAM)
Theory of Optically Induced Magnetization Switching in GaAs:Mn J. Fernandez-Rossier, A. Núñez, M. Abolfath and A. H. MacDonald Department of Physics, University.
1 Chapter 19Coordination Complexes 19.1The Formation of Coordination Complexes 19.2Structures of Coordination Complexes 19.3Crystal-Field Theory and Magnetic.
Terahertz spectroscopy of electromagnons in Multiferroics
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Spintronics and Graphene  Spin Valves and Giant Magnetoresistance  Graphene spin valves  Coherent spin valves with graphene.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Atomic-scale Engeered Spins at a Surface
Andreas Scholl, 1 Marco Liberati, 2 Hendrik Ohldag, 3 Frithjof Nolting, 4 Joachim Stöhr 3 1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Multiferroic Thin Films Nanoscience Symposium 2006 June 15 By: Arramel RuGRuG.
The Story of Giant Magnetoresistance (GMR)
University of Wisconsin-Madison Department of Materials Science and Engineering Opportunities for Coherent Scattering in Ferroelectrics and Multiferroics.
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Magnetic transitions of multiferroics revealed by photons 黃迪靖 同步輻射研究中心 清華大學物理系 May 9, 2007 Multiferroicity Soft x-ray magnetic scattering Magnetic transitions.
Neutron Scattering Studies of Tough Quantum Magnetism Problems
István Kézsmárki Budapest University of Technology Giant Directional Optical Anisotropies in the THz regime Spinwave Excitations in Multiferroics Collegues.
Multi-ferroic and magnetoelectric materials and interfaces by J. P. Velev, S. S. Jaswal, and E. Y. Tsymbal Philosophical Transactions A Volume 369(1948):
Control of ferroelectricity and magnetism in multi-ferroic BiFeO 3 by epitaxial strain by D. Sando, A. Agbelele, C. Daumont, D. Rahmedov, W. Ren, I. C.
Title: Multiferroics 台灣大學物理系 胡崇德 (C. D. Hu) Abstract
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Single Molecular Magnets
Magnetic Frustration at Triple-Axis  Magnetism, Neutron Scattering, Geometrical Frustration  ZnCr 2 O 4 : The Most Frustrated Magnet How are the fluctuating.
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Recontres du Vietnam August 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia.
Magnon Another Carrier of Thermal Conductivity
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Hiroshima Nov 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia (KIAS) Shigeki.
Theory of current-driven domain wall motion - spin transfer and momentum transfer Gen Tatara 多々良 源 Graduate School of Science, Osaka University Hiroshi.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Switching with Ultrafast Magnetic Field Pulses Ioan Tudosa.
March Meeting 2007 Spin-polarization coupling in multiferroic transition-metal oxides Shigeki Onoda (U. Tokyo) Chenglong Jia (KIAS) Jung Hoon Han (SKKU)
Ultrafast Dynamic Study of Spin and Magnetization Reversal in (Ga,Mn)As Xinhui Zhang (张新惠) State Key Laboratory for Superlattices and Microstructures.
Conclusion Room- temperature ferrimagnet with large magnetism P. S. Wang, H. J. Xiang* Key Laboratory of Computational Physical Sciences (Ministry of Education),
Phase Diagram of Ruthenate: Ca2-xSrxRuO4 (CSRO) (0. 0<x<2
Search for Novel Quantum Phases in
Ferromagnetism and antiferromagnetism ferromagnetism (FM)
Magneto-Impedance Spectroscopy of Epitaxial Multiferroic Thin Films
Multiferroics as Data Storage Elements
Lecture 8: Volume Interactions
Magnetic and Raman response properties in La2CuO4
Bumsoo Kyung, Vasyl Hankevych, and André-Marie Tremblay
Liquefying a gas by applying pressure
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Spectroscopy of ultracold bosons by periodic lattice modulations
Spin-lattice Interaction Effects in Frustrated Antiferromagnets
Magnetic Properties of Coordination Compounds
Liquefying a gas by applying pressure
Joon Yang MSE Department Advisor L. Salamanca-Riba MRSEC – IRG 2
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

Electric-field control of magnetism and magnons in the room-temperature multiferroic BiFeO3 Image © NPG Rogério de Sousa Dept. of Physics and Astronomy, University of Victoria, B.C., Canada Joint work with: M. Allen (UVic), M. Cazayous (Paris-7) This talk published in R. de Sousa, Physics in Canada, 72, 57 (2016)

E-field control of magnetism in metallic materials: Ferromagnetic thin films and magnetic semiconductors Daalderop et al PRB 1991 Microscopic mechanism: Single ion anisotropy is strongly dependent on the filling of d-orbitals Image © APS Shiota et al, Nat. Mat. 2012 Wang et al, Nat. Mat. 2012 Image © NPG Chiba et al, Nature 2008 Image © NPG

BiFeO3 (BFO): The room temperature multiferroic Ferroelectric order (P), Antiferromagnetic order (L=M1-M2), and weak ferromagnetism (M=M1+M2) P M2 M1 Fe Oxygen Bi TFE = 1093 K ; TNéel= 643 K; Spiral magnetism: Ground state is a cycloid with period of 620 Å.

Antiferromagnetic Cycloid ground state in BFO 620 Å Weak ferromagnetism M = Z X L

E-field control of the cycloid in BFO Lebeugle et al, PRL 2008; Lee et al, PRB 2008 P [111] Bi E q P [1-11] Image © APS

Electrically-switchable magnetic memory? Heron et al, PRL 2011; M. Fiebig Physics 2011; Heron et al Nature 2014 Image © APS Ashraf et al IEDM 2012: Energy dissipation for switching is 5 J/m2 6 X less than the best Spin-transfer torque device!

E-field control of the cycloid in BFO P [1-11] P [111] q E Image © APS Not the whole story! E-field control of magnetism can occur even without switching P!

Optical excitation spectra of a cycloidal magnet

Excitation spectra of a cycloidal multiferroic k/Q ω 3 k/Q -1/2 1/2 ω Cyclons: Extra-cyclons:

High resolution Raman scattering of cycloidal magnons M. Cazayous et al, PRL 2008; R. de Sousa and J.E. Moore, PRB 2008; R.S. Fishman et al, PRB 2013 Image © APS

Magnon excitations as a function of external B field IR spectroscopy: U. Nagel et al PRL 2013 (Theory by R.S. Fishman) Image © APS

Magnon excitations as a function of strain (BFO thin films on different substrates) (LaAlO3)0.3–(Sr2AlTaO6)0.7 SmScO3 Sando et al, Nature Mat. 2013 DyScO3 NdScO3 Same as in Heron et al PRL 2011 GdScO3 PrScO3 Image © NPG

BiFeO3 with a strong E-field (~ 105 V/cm) P. Rovillain et al, Nature Mat. 2010 Image © NPG

E-field shift of magnon spectra E-field shift of magnon spectra! 105 times larger than previous experiments Images © NPG

Symmetry-based origin of the effect Image © NPG  Electric-field induced phase transition to a homogeneous state

E-field effect on magnetic order

Microscopic origin of E-field induced magnetoelectric effect R. de Sousa, M. Allen, M. Cazayous, PRL 2013 Spin-orbit interaction on Bi ions "Lattice mechanism": E-field displaces ions, mixing E-field with spins "Electronic mechanism": E-field induces orbital admixture

Magnetic anisotropy in terms of atomic orbitals and their location

A special kind of linear magnetoelectric effect Explains the origin of the giant shift of magnon spectra!

Spin-current interaction Effect of an external E-field on BFO's ground state? Use continuum field theory Spin-current interaction Exchange E-field effect

E-field control of Antiferromagnetism

E-field control of weak ferromagnetism Apply E=2 X 104 V/cm along one of three special directions <M>≠0

Phase diagram: E//-X, B//Z Homogeneous Planar cycloid M. Allen and R. de Sousa, unpublished

Phase diagram: E//-X, B//X Q E 1st order phase trans. Homogeneous Conical cycloid M. Allen and R. de Sousa, unpublished

BFO's magnon spectra as a function of pressure J. Buhot et al, PRL 2015 Image © APS

Conclusion: A new kind of E-field control of magnetism in insulators E-field control of magnetism without switching P.  Reduced energy dissipation in spin based devices! Microscopic origin: strong spin-orbit coupling (at Bi) combined with the admixture between 3d and 6p orbitals induced by the E-field. An external E-field applied along certain directions is capable of destroying the cycloid, and of controlling the Néel vector and magnetization directions.

References R. de Sousa, Physics in Canada 72, 57 (2016) J. Buhot et al, PRL 115, 267204 (2015) R. de Sousa, M. Allen, M. Cazayous, PRL 110, 267202 (2013) P. Rovillain, R. de Sousa et al, Nature Materials 9, 975 (2010) R. de Sousa and J.E. Moore, PRL 102, 249701 (2009) M. Cazayous, R. de Sousa et al, PRL 101, 037601 (2008) R. de Sousa and J.E. Moore, APL 92, 022514 (2008) R. de Sousa and J.E. Moore, PRB 77, 012406 (2008)