July 17, 2017 ICRC2017 Charge-sign dependence in the solar modulation during the solar cycle 23 Shoko Miyake (NIT, Ibaraki Col., Japan.) Shohei Yanagita.

Slides:



Advertisements
Similar presentations
あどべんちゃーにほんご L. 2か にほんごのきょうしつ /Japanese Classroom General goals of the lessons: You will be able to communicate the information below in the given situations.
Advertisements

S. Della Torre 1,2, P. Bobik 5, G. Boella 1,3, M.J. Boschini 1,4, C. Consolandi 1, M. Gervasi 1,3, D. Grandi 1, K. Kudela 5, F. Noventa 1,3, S. Pensotti.
Is Charlie Brown a Loser? Do you think you know your real character? Do you actually know, for example, the good and bad points about yourself? It is.
SPSSによるHosmer-Lemeshow検定について
物理演算を利用したビデオエフェクタの 作成 浅野益弘. 研究内容 経緯 NiVE ( Nico Visual Effects )用のエフェ クトプラグインの作成 本プラグインにより動画作成にかかる 時間と手間の短縮と省力化を目指す.
7.n次の行列式   一般的な(n次の)行列式の定義には、数学的な概念がいろいろ必要である。まずそれらを順に見ていく。
学生の携帯電話選択理由 岡田隆太.
概要 2009 年 10 月 23 日に、いて座に出現した X 線新星 (XTE J ) を、出現から消滅まで 全天 X 線監視装置 MAXI (マキシ)で観測したところ、 新種のブラックホール新星であることが判明した。 従来のブラックホールを、 多量のガスを一気に飲み込む「肉食系」と.
3.多項式計算アルゴリズム べき乗の計算 多項式の計算.
時間的に変化する信号. 普通の正弦波 は豊富な情報を含んでいません これだけではラジオのような複雑な情報 を送れない 振幅 a あるいは角速度 ω を時間的に変化 させて情報を送る.
九州大学 岡村研究室 久保 貴哉 1. 利用中のAPの数の推移 2 横軸:時刻 縦軸:接続要求数 ・深夜では一分間で平均一台、 昼間では平均14台程度の接続 要求をAPが受けている。 ・急にAPの利用者数が増えてく るのは7~8時あたり.
麻雀ゲーム 和島研究室 ソ 小林巧人
5.連立一次方程式.
相関.
―本日の講義― ・平均と分散 -代表値 -ぱらつき(分散・標準偏差等) ・Excelによる演習
ノイズ. 雑音とも呼ばれる。(音でなくても、雑 音という) 入力データに含まれる、本来ほしくない 成分.
素数判定法 2011/6/20.
フーリエ係数の性質. どこまで足す? 理想的には無限大であるが、実際に はそれは出来ない これをフーリエ解析してみる.
地球温暖化と 天候の関係性 ~温暖化は天候のせいなのではないのか~. 目的課題 地球温暖化現象 ただの気象条件によるものではないのか? 地球温暖化現象に天候は関係しているの か?
公開鍵暗号系 2011/05/09.
1章 行列と行列式.
フーリエ級数. 一般的な波はこのように表せる a,b をフーリエ級数とい う 比率:
3.エントロピーの性質と各種情報量.
Excelによる積分.
計算のスピードアップ コンピュータでも、sin、cosの計算は大変です 足し算、引き算、掛け算、割り算は早いです
線形符号(10章).
複素数.
信号測定. 正弦波 多くの場合正弦波は 0V の上下で振動する しかし、これでは AD 変換器に入れら れないので、オフ セットを調整して データを取った.
ビット. 十進数と二進数 十進数  0から9までの数字を使って 0、1、2、3、4、5、6、7、8、9、 10、11、12 と数える 二進数  0と1を使って 0、1、10、11、100、101、11 0、111 と数える.
3.正方行列(単位行列、逆行列、対称行列、交代行列)
JPN 311: Conversation and Composition 許可 (permission)
地図に親しむ 「しゅくしゃくのちがう 地図を 使ってきょりを調べよ う1」 小学4年 社会. 山口駅裁判所 県立 美術館 サビエル 記念聖堂 山口市役所 地図で探そう 市民会館 県立 図書館.
方程式を「算木」で 解いてみよう! 愛媛大学 教育学部 平田 浩一.
C言語応用 構造体.
3.多項式計算アルゴリズム べき乗の計算 多項式の計算.
JPN 312 (Fall 2007): Conversation and Composition 文句 ( もんく ) を言う.
移動エージェントプログラムの 動作表示のためのアニメーション言 語 名古屋大学情報工学コース 坂部研究室 高岸 健.
1 プログラミング言語論 第13回 プログラムの意味論と検証 (2) 表示的意味論 担当:犬塚. 2 表示的意味論 denotational semantics  表示的意味論では、プログラムの要素とそれが 意味するものを対応付ける。 変数 式 文 A B … A+2 2B+C A:=A+2 if.
CGC confronts LHC data 1. “Gluon saturation and inclusive hadron production at LHC” by E. Levin and A.H. Rezaeian, arXiv: [hep-ph] 4 May 2010.
8.任意のデータ構造 (グラフの表現とアルゴリズム)
第14回 プログラムの意味論と検証(3) 不動点意味論 担当:犬塚
Kitenet の解析 (110118) 九州大学 工学部 電気情報工学科 岡村研究室 久保 貴哉.
Exercise IV-A p.164. What did they say? 何と言ってましたか。 1.I’m busy this month. 2.I’m busy next month, too. 3.I’m going shopping tomorrow. 4.I live in Kyoto.
音の変化を視覚化する サウンドプレイヤーの作成
HCC Hair Color Change. メンバー ソ 渋谷麻美 ソ 渋谷麻美 ソ 清野理衣子 ソ 清野理衣子 ソ 三上貴大 ソ 三上貴大.
Self-efficacy(自己効力感)について
Solar Modulation: A Theoretical Perspective Modeling of cosmic ray charge-sign dependence in the heliosphere Marius Potgieter Unit for Space Physics North-West.
Recurrent Cosmic Ray Variations in József Kόta & J.R. Jokipii University of Arizona, LPL Tucson, AZ , USA 23 rd ECRS, Moscow, Russia,
Problems in Space Physics 長井嗣信 東京工業大学. 磁気圏の未解決問題 「いつも同じ話をしている」 1.容易に解決できそうだが 2.何が観測的に問題なのか 3.今後どうすべきか.
たくさんの人がいっしょに乗れる乗り物を 「公共交通」といいます バスや電車 と 自動車 の よいところ と よくない ところ よいところ と よくない ところ を考えてみよう!
02-06 Dec 2013CHPC-Cape town1 A study of the global heliospheric modulation of galactic Carbon M. D. Ngobeni, M. S. Potgieter Centre for Space Research,
Evolution of Emerging Flux and Associated Active Phenomena Takehiro Miyagoshi (GUAS, Japan) Takaaki Yokoyama (NRO, Japan)
Geomagnetic Storms Y. Kamide Kyoto University. Outline 1. 磁気嵐とは? 2. 磁気嵐研究の歴史 3. エネルギーバランス基本方程式 4. 磁気嵐とサブストームの関係 5. 最近のトピックス 太陽活動周期と磁気嵐 ダブル磁気嵐 磁気嵐時のオーロラベルトのサイ.
P. Bobik, G. Boella, M. J. Boschini, M. Gervasi, D. Grandi, K. Kudela, S. Pensotti, P.G. Rancoita 2D Stochastic Monte Carlo to evaluate the modulation.
21 Sep 2006 Kentaro MIKI for the PHENIX collaboration University of Tsukuba The Physical Society of Japan 62th Annual Meeting RHIC-PHENIX 実験における高横運動量領域での.
Application of LES to CFD simulation of Diesel combustion 3604A058-2 Fumio KUWABARA.
MULTI3D T. Anan. MULTI3D MULTI3D (Botnen 1997) Leenaarts & Carlsson 2009; Leenaarts et al – MPI-parallelized, domain-decomposed version.
RELATIVE CLAUSES Adjectival Clauses/Modifiers. RELATIVE CLAUSES A relative clause is the part of a sentence which describes a noun Eg. The cake (which)
HES-HKS & KaoS meeting. Contents Different distorted initial matrices Distorted matrix sample 6 (dist6) Distorted matrix sample 7 (dist7) Distorted matrix.
Bootstrapping 2014/4/13 R basic 3 Ryusuke Murakami.
Solar modulation of cosmic ray positrons in a quiet heliosphere
35th International Cosmic Ray Conference
Solar Modulation Davide Grandi AMS Group-INFN Milano-Bicocca.
M. D Ngobeni*,1, M. S. Potgieter1
Xi Luo1, Ming Zhang1, Hamid K. Rassoul1, and N.V. Pogorelov2
  V1 and V2 Measurements of Galactic and Anomalous Cosmic Rays in the Outer Heliosphere and the Heliosheath during Solar Cycle #23   W.R. Webber (The.
International Workshop
AXEL-2011 Introduction to Particle Accelerators
Mariette Hitge, Adri Burger
Presentation transcript:

July 17, 2017 ICRC2017 Charge-sign dependence in the solar modulation during the solar cycle 23 Shoko Miyake (NIT, Ibaraki Col., Japan.) Shohei Yanagita (Ibaraki Univ., Japan) Good afternoon. In this study, We tried to develop a model for the solar modulation that reproduce a charge-sign dependence observed by BESS and PAMELA.

July 17, 2017 ICRC2017 Introduction Charge-sign dependence in the solar modulation is caused by the drift motion of GCRs. We developed the model for the solar modulation of GCRs on the basis of the drift model. Our results of the charge-sign dependence in the solar modulation are compared with the energy spectra of the GCR protons and antiprotons observed by BESS and PAMELA during the solar cycle 23. As you know, the solar modulation has a charge-sign dependence caused by the drift motion of the galactic cosmic rays. In this study we have developed the numerical model for the solar modulation on the basis of the drift model to study quantitatively the charge-sign dependence. In the last solar cycle, the long term observations of multiple GCRs have been performed by BESS and PAMELA. These observations entirely cover the solar minimum, the solar maximum, and the solar magnetic polarity reversal. So, these observations provide a crucial test of a charge-sign dependence of the solar modulation. We calculated the solar modulation of protons and antiprotons during the last solar cycle and compared our results with these observations. BESS PAMELA

Outline Introduction Overview of our model Results Summary July 17, 2017 ICRC2017 Outline Introduction Overview of our model Results Energy spectrum of GCR protons and antiprotons Antiproton/proton ratio Summary This is outline. Next, I talk about overview of our model for the solar modulation.

Overview of our Model 3D numerical simulation of the solar modulation July 17, 2017 ICRC2017 Overview of our Model 3D numerical simulation of the solar modulation based on the stochastic differential equation (SDE) adopting fully anisotropic diffusion process considering variations of Vsw, B1AU, and tilt angle of HCS Stochastic Differential Equation (Yamada, Yanagita and Yoshida 1998) (Zhang 1999) We performed a full 3D numerical simulation of the solar modulation. This model is based on the stochastic differential equation equivalent to the Parker’s transport equation. We considered the diffusion, convection, drift motion, and the adiabatic energy losses. The drift velocity along the heliospheric current sheet are calculated by using approximate function proposed by Burger and Potgieter. position of pseudo particle Wiener process given by a Gaussian distribution HCS drift velocity: approximate function (Burger and Potgieter, 1989)

Overview of our Model 3D numerical simulation of the solar modulation July 17, 2017 ICRC2017 Overview of our Model 3D numerical simulation of the solar modulation based on the stochastic differential equation (SDE) adopting fully anisotropic diffusion process considering variations of Vsw, B1AU, and tilt angle of HCS Diffusion Coefficient This is the diffusion coefficient considered in this calculation. It is fully anisotropic and the parameters are iteratively searched so that our results are largely consistent with the observations. We found that, to reproduce the observations, the diffusion coefficient in the polar angle direction has to change with the polar angle so that has large values at the heliospheric polar region. Necessity of this consideration is consistent with the findings by the studies of latitudinal gradient of GCRs observed by Ulysses. But the detailed function is different with our model.

Overview of our Model 3D numerical simulation of the solar modulation July 17, 2017 ICRC2017 Overview of our Model 3D numerical simulation of the solar modulation based on the stochastic differential equation (SDE) adopting fully anisotropic diffusion process considering variations of Vsw, B1AU, and tilt angle of HCS Heliospheric Model Isotropic solar wind speed Standard Parker spiral HMF Radial dependent tilt angle of the heliospheric current sheet (HCS) And we also considered the variations of the solar wind speed, the magnitude of the heliospheric magnetic fields, and the tilt angle of the heliospheric current sheet. As the simple model, we assumed an isotropic solar wind speed and the standard Parker spiral HMF. On the other hand, we precisely reproduce the structure of the heliospheric current sheet. This is because the drift motion along the current sheet strongly affect the charge-sign dependence of the solar modulation. The tilt angle of the current sheet changes with not only the time but also the radial distance from the Sun

Outline Introduction Overview of our model Results Summary July 17, 2017 ICRC2017 Outline Introduction Overview of our model Results Energy spectrum of GCR protons and antiprotons Antiproton/proton ratio Summary BESS97〜BESS Polar II PAMELA Now, I'll show our results. We made a calculation and a comparison with the observations of the energy spectra of protons and antiprotons from 1997 in which the solar minimum at a positive magnetic polarity to the 2009 in which the solar minimum at a negative magnetic polarity. Year Solar Min. (A>0:Positive) Solar Max. Solar Min. (A<0:Netative)

Energy Spectrum of GCR Protons and Antiprotons July 17, 2017 ICRC2017 Energy Spectrum of GCR Protons and Antiprotons These are our results of the energy spectra of protons and antiprotons and the observations corresponding each result. We can find that our results are largely consistent with the observations by BESS and PAMELA except for a few observations.

Energy Spectrum of GCR Protons and Antiprotons July 17, 2017 ICRC2017 Energy Spectrum of GCR Protons and Antiprotons Solar Min. A>0:Positive Solar Max. 1997 (BESS97) 1998 (BESS98) 1999 (BESS99) 2000 (BESS00) These are the energy spectra of protons and antiprotons in a each year in which a positive magnetic polarity from the solar minimum to the solar maximum. We succeeded to reproduce the most of the energy spectra.

Energy Spectrum of GCR Protons and Antiprotons July 17, 2017 ICRC2017 Energy Spectrum of GCR Protons and Antiprotons Solar Min. A>0:Positive Solar Max. 1997 (BESS97) 1998 (BESS98) 1999 (BESS99) 2000 (BESS00) Solar maximum But there are some discrepancies with the observations; the spectrum of protons in 2000, and the spectra of antiprotons in 1998 and 1999. The year 2000 was in the solar maximum and we assumed that the magnetic polarity reversal occurred just before the time in which the observation by BESS was performed. So it is reasonable that our model considering simple and standard magnetic field is hard to reproduce the observations in such a special phase. As for the discrepancies in the transition period for the qA negative charge-sign phase, it seems that we need a further verification. Transition period for qA<0

Energy Spectrum of GCR Protons and Antiprotons July 17, 2017 ICRC2017 Energy Spectrum of GCR Protons and Antiprotons Solar Max. A<0:Negative Solar Min. 2002 (BESS02) 2004 (BESS-Polar I) 2007 (BESS-Polar II) 2006~ (PAMELA) Next, these are the energy spectra in these years, in which the negative magnetic polarity from the solar maximum to the solar minimum.

Energy Spectrum of GCR Protons and Antiprotons July 17, 2017 ICRC2017 Energy Spectrum of GCR Protons and Antiprotons Solar Max. A<0:Negative Solar Min. 2002 (BESS02) 2004 (BESS-Polar I) 2007 (BESS-Polar II) 2006~ (PAMELA) Transition period for qA<0 We can see large discrepancy with the observations of protons in 2004. 2004 is also in the transition period for a qA negative charge-sign phase. So we conclude that our model fails to reproduce the energy spectrum at the transition period for the qA negative charge-sign phase. This implies that there is any physical reason that is not considered in our model.

Antiproton/proton ratio July 17, 2017 ICRC2017 Antiproton/proton ratio These are our results of the antiproton/proton ratios and those time profiles from 1995 to 2010. We can find that our results reproduce the quick increase of the ratio in 2000 in which the magnetic polarity reversal occurred. This is caused by the charge-sign dependence of the solar modulation.

July 17, 2017 ICRC2017 Possible reasons for the discrepancy of the flux at the transition period for qA<0 (Negative) Solar wind speed (Vsw) HMF strength (B1AU) Tilt angle of HCS (α) Finally let’s discuss the possible reasons for the discrepancy of the flux at the transition period for the qA negative charge-sign phase. In our calculation, we considered the variations of the solar wind speed, the HMF strength, and the tilt angle of the current sheet. These energy spectra show the effects of these three parameters on the solar modulation. We can find that the largest change of flux in the qA negative charge-sign phase shown by this blue area is caused by the variations of the tilt angle of the current sheet. So, we think that the discrepancy of the flux at the transition period for the qA negative charge-sign phase could be related with the current sheet.

July 17, 2017 ICRC2017 Possible reasons for the discrepancy of the flux at the transition period for qA<0 (Negative) CS in the heliosheath Latitudinal dependence of Vsw (Florinski, AdSpR, 2011) (McComas, GRL, 2008) Although the consideration is insufficient, we have two ideas for the possible reasons now. One is the current sheet in the heliospheath. As Florinski discussed, the current sheet in the heliosheath may play a important role of the modulation in the heliosheath. If it is true, there could be a change of the energy spectrum at the termination shock where we set the local interstellar spectrum. As another possible reason, we suspect the effect of the latitudinal dependence of the solar wind speed on the structure of the heliospheric current sheet. Ulysses observed the strong latitudinal dependence of the solar wind speed at the solar minimum. There is a possibility that these latitudinal dependence would be still remain in the middle phase of the solar cycle. If it is true and the current sheet flare out into the region where the high speed solar wind exist, there could be a change of the structure of the HCS. These are just ideas. To clarify these possible reasons, we should need further verifications. There could be any change of the energy spectrum at TS… There could be any change of the structure of the HCS…

Summary We developed the model of the solar modulation July 17, 2017 ICRC2017 Summary We developed the model of the solar modulation based on the SDE adopting anisotropic diffusion process considering variations of Vsw, B1AU, and tilt angle of HCS Necessity of consideration of the latitudinal dependence of the diffusion coefficient in the polar angle direction is consistent with the findings by the studies of latitudinal gradient of GCRs observed by Ulysses. The energy spectra of GCR protons and antiprotons observed by BESS and PAMELA are largely reproduced except for the discrepancy at the transition phase for qA<0. The discrepancy of the flux at the transition phase could be caused by the complex physics of the HCS that cannot explain by the standard Parker-spiral HMF. Further verification should be necessary to clarify the possible reasons of the discrepancy of the flux at the transition phase. This is the summary and I’ll skip to say. Thank you very much.

July 17, 2017 ICRC2017 Backup

AMS-02 Measurement of GCR protons: May 2011 ~ Nov. 2013 July 17, 2017 ICRC2017 AMS-02 (Aguilar et al., PRL, 2015; Aguilar et al., PRL, 2016) Measurement of GCR protons: May 2011 ~ Nov. 2013 Measurement of GCR antiprotons: May 2011 ~ May 2015 AMSがtime profileをもうすぐ出すから、それを使ってour modelをさらに検証したい。 ただし今はpositive magnetic fieldなので、protonのtime profile がでても検証できない。 electron、もしくはantiprotonのようなnegative charged particle のデータが必要であり、CALETのデータを使った検証も有効だと思っている。 また現在、MHDシミュレーションによる精密な太陽圏環境とSDEのカップリングによる研究も進めている。 この研究はHCSを精密に再現するモデルであることが大きな特徴であって、MHDシミュレーションが実現した段階でHCSの構造の変化が起きるのかどうかを知ることができるし、そこでの太陽変調を計算することで定量的な検証を行うことができる。

Antiproton/proton ratio July 17, 2017 ICRC2017 Antiproton/proton ratio 1997 (BESS97) 1998 (BESS98) 1999 (BESS99) 2000 (BESS00) 2002 (BESS02) 2004 (BESS-Polar I) 2007 (BESS-Polar II) 2006~ (PAMELA) These are antiproton/proton ratio corresponding each observation. As I already told, our calculation failed to reproduce the energy spectrum at the transition period for the negative charge-sign phase. We can see the discrepancy between our result and the observation at 2004, too. But it seems that the discrepancies at 1998 and 1999 are small. This is because of the discrepancies of the flux of antiprotons are smaller than that of protons.

July 17, 2017 ICRC2017 Possible reasons for the large diffusion coefficient of polar angle direction at the heliospheric polar region Fisk-type HMF caused by the differential rotation of the Sun Large magnitude of the randomly-oriented transverse magnetic fields (Fisk, ApJ, 1999) (Jokipii and Kota, GRL, 1989) どうして磁場のべき指数にtheta依存性を入れたのか、対策 This may suggest the Fisk-type HMF caused by the differential rotation of the Sun [25, 26], in which the structure of the magnetic field is different with that of the Parker-Spiral HMF at the polar region. As other possible reason of the large diffusion coefficient of the polar angle direction, one could expect the magnetic field near the pole that is dominated by the randomly-oriented transverse magnetic fields with magnitude much larger than that of the Parker-Spiral HMF

Latitudinal gradient of GCR protons observed by Ulysses spacecraft July 17, 2017 ICRC2017 Latitudinal gradient of GCR protons observed by Ulysses spacecraft (Burger and Potgieter, JGR, 2000)

Local Interstellar Spectrum July 17, 2017 ICRC2017 Local Interstellar Spectrum LIS at the termination shock where r=100AU is assumed to be constant. The LIS of GCR protons Jp has a similar energy dependence with a LIS that is in agreement with the flux of GCR protons measured by Voyager 1 in the outer heliosphere, though we modified it so that the flux of the high energy protons consists with the data measured by BESS-TeV. The LIS of GCR antiproton Jpbar that has the same power-law index at high energy region is assumed.

Drift Motion of the GCRs July 17, 2017 ICRC2017 Drift Motion of the GCRs Charge sign dependence is caused by the drift motion qA>0 (Positive;+) qA<0 (Negative;-) 1 GeV proton flux Positive(+) Flat Before moving to the next topic, I'd like to talk about the effect of the drift motion of the GCRs. The GCRs drift along the magnetic field by following the curvature-gradient drift motion. So the drift motions affect the trajectories of the GCRs in the heliosphere. These two panels show the trajectories of the charged particles in the heliosphere. If the combination of the particle charge q and the polarity of the magnetic field A is Positive, the particle propagate along the polar region from the heliospheric boundary and go away along the the heliospheric current sheet that exist around the equatorial plane. So, in the positive polarity, the particles can reach near the earth without being affected by the structure of the current sheet. However, in the case of the Negative polarity, the particles are strongly affected by the structure of the current sheet, because the drift motion turn into the opposite direction. At the solar minimum, the current sheet exist around the equatorial plane. But at the solar maximum, the current sheet trails almost throughout the heliosphere. So, the GCR flux at the negative polarity changes drastically during the solar cycle. These features causes the charge sign dependences of the solar modulation, and we obtained the results of predictions that has the charge sign dependence. For the discussions, please keep in your mind the two points of charge sign dependence. One is, at the solar minimum, the flux at the positive polarity is smaller than that at the negative polarity. The second is, the variations of the flux at the positive polarity has a flat profile, but sharp profile at the negative polarity. Sharp Negative(-) Flux(+) < Flux(-) at solar min. Flat Profile (+); Sharp Profile (-)