Radiation Damage TCAD Analysis of Low Gain Avalanche Detectors

Slides:



Advertisements
Similar presentations
Trapping in silicon detectors G. Kramberger Jožef Stefan Institute, Ljubljana Slovenia G. Kramberger, Trapping in silicon detectors, Aug , 2006,
Advertisements

Silicon Preshower for the CMS: BARC Participation
F.R.Palomo, et al.MOS Capacitor DDD Dosimeter 1/13 RD50 Workshop - CERN – November 2012 MOS Capacitor Displacement Damage Dose (DDD) Dosimeter F.R.
P. Fernández-Martínez – Optimized LGAD Periphery25 th RD50 Workshop, CERN Nov Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Department of Physics VERTEX 2002 – Hawaii, 3-7 Nov Outline: Introduction ISE simulation of non-irradiated and irradiated devices Non-homogeneous.
Characterization of 150  m thick epitaxial silicon pad detectors from different producers after 24 GeV/c proton irradiation Herbert Hoedlmoser (1), Michael.
TCT+, eTCT and I-DLTS measurement setups at the CERN SSD Lab
Charge collection studies on heavily diodes from RD50 multiplication run G. Kramberger, V. Cindro, I. Mandić, M. Mikuž Ϯ, M. Milovanović, M. Zavrtanik.
F.R.PalomoDevice Simulation Meeting 1/22 CERN 7th July New 3D Detectors.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Experimentelle Kernphysik
Study of leakage current and effective dopant concentration in irradiated epi-Si detectors I. Dolenc, V. Cindro, G. Kramberger, I. Mandić, M. Mikuž Jožef.
ALBA Synchrotron – 17 June 2010 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona First Measurements on 3D Strips Detectors.
RD50 RD50 workshop FreiburgKatharina Kaska 1 Determination of depletion voltage from CV, IV and CCE measurements on Pad Detectors Katharina Kaska, Michael.
1 G. Pellegrini The 9th LC-Spain meeting 8th "Trento" Workshop on Advanced Silicon Radiation Detectors 3D Double-Sided sensors for the CMS phase-2 vertex.
Trento, Feb.28, 2005 Workshop on p-type detectors 1 Comprehensive Radiation Damage Modeling of Silicon Detectors Petasecca M. 1,3, Moscatelli F. 1,2,3,
1 Development of radiation hard microstrip detectors for the CBM Experiment Sudeep Chatterji GSI Helmholtz Centre for Heavy Ion Research DPG Bonn 16 March,
Silicon detector processing and technology: Part II
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Analysis of Edge and Surface TCTs for Irradiated 3D Silicon Strip Detectors Graeme Stewart a, R. Bates a, C. Corral b, M. Fantoba b, G. Kramberger c, G.
Simulations of 3D detectors
25th RD50 Workshop (Bucharest) June 13th, Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona IMB-CNM, Barcelona (Spain)
P*-n-n* diode CV characteristics changes at various contact and body doping concentrations. TCAD simulation Ernestas Zasinas, Rokas Bondzinskas, Juozas.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
1 Nicolo Cartiglia, INFN, Torino - RD50 - Santander, 2015 Timing performance of LGAD-UFSD 1.New results from the last CNM LGAD runs 2.A proposal for LGAD.
Charge Collection and Trapping in Epitaxial Silicon Detectors after Neutron-Irradiation Thomas Pöhlsen, Julian Becker, Eckhart Fretwurst, Robert Klanner,
G. Steinbrück, University of Hamburg, SLHC Workshop, Perugia, 3-4 April Epitaxial Silicon Detectors for Particle Tracking Overview on Radiation Tolerance.
1/14 Characterization of P-type Silicon Detectors Irradiated with Neutrons M.Miñano 1, J.P.Balbuena 2, C. García 1, S.González 1, C.Lacasta 1, V.Lacuesta.
New research activity “Silicon detectors modeling in RD50”: goals, tasks and the first steps Vladimir Eremin Ioffe Phisical – technical institute St. Petresburg,
INFN and University of Perugia Characterization of radiation damage effects in silicon detectors at High Fluence HL-LHC D. Passeri (1,2), F. Moscatelli.
9 th “Trento” Workshop on Advanced Silicon Radiation Detectors Genova, February 26-28, 2014 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica.
Inversion Study on MCz-n and MCz-p silicon PAD detectors irradiated with 24 GeV/c protons Nicola Pacifico Excerpt from the MSc thesis Tutors: Prof. Mauro.
TCT measurements with SCP slim edge strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko.
Simulations of Hadron Irradiation Effects for Si Sensors Using Effective Bulk Damage Model A. Bhardwaj 1, H. Neugebauer 2, R. Dalal 1, M. Moll 2, Geetika.
Celso Figueiredo26/10/2015 Characterization and optimization of silicon sensors for intense radiation fields Traineeship project within the PH-DT-DD section.
Status of CNM RD50 LGAD Project27th RD50 Workshop, CERN 2-4 Dec Centro Nacional del MicroelectrónicaInstituto de Microelectrónica de Barcelona Status.
A CCE and TCT Study on low resistivity MCz p-on-n detectors Nicola Pacifico, Michael Moll, Manuel Fahrer 16 th RD50 workshop, Barcellona, 31 May-2 June.
The Sixth International "Hiroshima" Symposium Giulio Pellegrini Technology of p-type microstrip detectors with radiation hard p-spray, p-stop and moderate.
CNM double-sided 3D strip detectors before and after neutron irradiation Celeste Fleta, Richard Bates, Chris Parkes, David Pennicard, Lars Eklund (University.
TCAD Simulation – Semiconductor Technology Computer-Aided Design (TCAD) tool ENEXSS 5.5, developed by SELETE in Japan Device simulation part: HyDeLEOS.
Study on and 150  m thick p-type Epitaxial silicon pad detectors irradiated with protons and neutrons Eduardo del Castillo Sanchez, Manuel Fahrer,
Charge Multiplication Properties in Highly Irradiated Thin Epitaxial Silicon Diodes Jörn Lange, Julian Becker, Eckhart Fretwurst, Robert Klanner, Gunnar.
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
Simulation of new P-Type strip detectors 17th RD50 Workshop, CERN, Geneva 1/15 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona.
P. Fernández-Martínez – Optimized LGAD PeripheryRESMDD14, Firenze 8-10 October Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de.
Deep Level Transient Spectroscopy study of 3D silicon Mahfuza Ahmed.
G. PellegriniInstituto de Microelectrónica de Barcelona Status of LGAD RD50 projects at CNM28th RD50 Workshop (Torino) 1 Status of LGAD RD50 projects at.
E-TCT measurements with laser beam directed parallel to strips Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Mikuž 1,2,
TCT measurements of HV-CMOS test structures irradiated with neutrons I. Mandić 1, G. Kramberger 1, V. Cindro 1, A. Gorišek 1, B. Hiti 1, M. Mikuž 1,2,
TPA-TCT A novel Transient-Current-Technique based on the Two Photon Absorption process 25th RD50 CERN P. Castro 1, M. Fernández 1, J. González.
3D Simulation Studies of Irradiated BNL One-Sided Dual-column 3D Silicon Detector up to 1x1016 neq/cm2 Zheng Li1 and Tanja Palviainen2 1Brookhaven National.
ILD Silicon Tracking Status Report
Radiation damage studies in LGAD detectors from recent CNM and FBK run
Axel König, HEPHY Vienna
Simulation results from double-sided and standard 3D detectors
Simulation/modeling group – discussion session
First Investigation of Lithium Drifted Si Detectors
Characterization and modelling of signal dynamics in 3D-DDTC detectors
First production of Ultra-Fast Silicon Detectors at FBK
Modeling Radiation Damage Effects in Oxygenated Silicon Detectors
Radiation Damage TCAD Analysis of Low Gain Avalanche Detectors
Irradiation and annealing study of 3D p-type strip detectors
Graeme Stewarta, R. Batesa, G. Pellegrinib, G. Krambergerc, M
Study of radiation damage induced by 26MeV protons and reactor neutrons on heavily irradiated MCz, FZ and Epi silicon detectors N. Manna Dipartimento.
HG-Cal Simulation using Silvaco TCAD tool at Delhi University Chakresh Jain, Geetika Jain, Ranjeet Dalal, Ashutosh Bhardwaj, Kirti Ranjan CMS simulation.
Results from the first diode irradiation and status of bonding tests
TCAD Simulations of Silicon Detectors operating at High Fluences D
Design and fabrication of Endcap prototype sensors (petalet)
Radiation Damage in Silicon
Vladimir Cindro, RD50 Workshop, Prague, June 26-28, 2006
Forward-bias operation of FZ and MCz silicon detectors made with different geometries in view of their applications as radiation monitoring sensors J.
Presentation transcript:

Radiation Damage TCAD Analysis of Low Gain Avalanche Detectors F.R. Palomo1, M. Carulla2, S. Hidalgo2 ,G. Pellegrini2 ,I. Vila3, rogelio@zipi.us.es salvador.hidalgo@csic.es 1Departamento Ingeniería Electrónica, Escuela Superior de Ingenieros Universidad de Sevilla, Spain 2Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, Barcelona, Spain 3Instituto de Física de Cantabria, Santander, Spain

ReadOut Simulation Setup Sentaurus TCAD Simulation SetUp Red Pulsed Laser Simulation Setup Mixed Simulation Setup: Red Pulsed Laser: 670 nm, 10 mm spot, 1e4W/cm2, 50 ps, BackIllumination at Device Center ReadOut: gain unity current amplifier (Rf=1), AC (1 nF) coupled 2D detector model: 1 mm in Z direction, 3 mm in X direction, 300 mm in Y direction) ReadOut Simulation Setup z x y P-Stop Collector Ring C-Stop Low Gain Avalanche Detector (LGAD) cross-section Doping profiles under confidenciality rules

The equivalent PiN is an LGAD device without Pwell (gain well) 4,26 5,52 4,88 LGAD current transient, variable bias & Total transient charge Gain=(QLGAD/QPiN )|bias LGAD Bias Analysis: 250V, 450V, 650V, Gain shows a linear increase with bias The equivalent PiN is an LGAD device without Pwell (gain well)

Radiation Damage Models Simulation of Silicon Devices for the CMS Phase II Tracker Upgrade CMS Note 250887 CMS Proton Model CMS Neutron Model Four damage models Pennicard Model f =1e12 up to 1e14 neq/cm2 CMS Proton and Neutron model f = 1e14-1e15 neq/cm2 Delhi Model Proton f = 1e14-1e15 neq/cm2 New Perugia Model f =1e12 up to 2e16 neq/cm2 New Perugia Modeling of radiation damage effects in silicon detectors at high fluences HL-LHC with Sentaurus TCAD, D.Passeri et al, NIMA 824 (2016), 443-445 Pennicard Model Simulations of radiation-damaged 3D detectors for the Super-LHC, D.Pennicard et al. NIMA 592(1-2), 2008, pp16-25 N(cm-3)=hint x f Combined effect of bulk and Surface damage on strip insulation properties of proton irradiated n+-p silicon strip sensors, R.Dalal et al. JINST 2014 9 P04007 Delhi Model N(cm-3)=gint x f

LGAD Pulsed red laser transient, current amp readout (gain=1) Pennicard Damage Model LGAD 400V Bias Fluence Gain 4,80 1e12 4,72 1e13 4,54 1e14 3,36 Pennicard model valid up to 1e14 neq/cm2. It shows that LGAD does not experiment a significative gain reduction up to 1e14. At 1e14, gain decreases 29%. ## Putting traps in Silicon region only ## Trap concentrations found from Petasecca model and modified by D. Pennicard, Fluence=1E14 Physics (material="Silicon") { # Putting traps in silicon region only # Modified Perugia model with trapping times at reported value Traps ( (Acceptor Level EnergyMid=0.42 fromCondBand Conc=1.1613E14 Randomize=0.29 eXsection=9.5E-15 hXsection=9.5E-14) #Conc=Fluence*1.1613 (Acceptor Level EnergyMid=0.46 fromCondBand Conc=0.9E14 Randomize=0.23 eXsection=5E-15 hXsection=5E-14 ) #Conc=Fluence*0.9 (Donor Level EnergyMid=0.36 fromValBand Conc=0.9E14 Randomize=0.31 eXsection=3.23E-13 hXsection=3.23E-14 ) #Conc=Fluence*0.9 ) } (Reference PiN Charge 50.9 fC)

LGAD Pulsed red laser transient, current amp readout (gain=1) CMS Neutron Damage Model Fluence Charge (fC) Gain 244,0 4,80 1e14 186,1 3,66 1e15 30,7 0,60 ## Putting traps in Silicon region only ## Trap concentrations found from CMS Two level neutrons #Fluence=1E14 Physics (material="Silicon") { # Putting traps in silicon region only Traps ( (Acceptor Level EnergyMid=0.525 fromCondBand Conc=1.55E14 eXsection=1.2E-14 hXsection=1.2E-14) (Donor Level EnergyMid=0.48 fromValBand Conc=1.395E14 eXsection=1.2E-14 hXsection=1.2E-14) ) } PIN DIODE Non Irradiated

LGAD Pulsed red laser transient, current amp readout (gain=1) CMS Proton Damage Model Fluence Charge (fC) Gain 244,0 4,80 1e14 186,7 3,67 1e15 24,6 0,48 ## Putting traps in Silicon region only ## Trap concentrations found from CMS Two level protons #Fluence=1E14 Physics (material="Silicon") { # Putting traps in silicon region only Traps ( (Acceptor Level EnergyMid=0.525 fromCondBand Conc=1.8344E14 eXsection=1E-14 hXsection=1E-14) (Donor Level EnergyMid=0.48 fromValBand Conc=1.6390E14 eXsection=1E-14 hXsection=1E-14) ) } PIN DIODE Non Irradiated

LGAD Pulsed red laser transient, current amp readout (gain=1) Delhi Damage Model Fluence Charge (fC) Gain 244,0 4,80 1e14 124,6 2,45 1e15 9,4 0,18 ## Putting traps in Silicon region only ## Trap concentrations found from Delhi Two level #Fluence=1E14 Physics (material="Silicon") { # Putting traps in silicon region only Traps ( (Acceptor Level EnergyMid=0.51 fromCondBand Conc=4E14 eXsection=2E-14 hXsection=3.8E-15) (Donor Level EnergyMid=0.48 fromValBand Conc=3E14 eXsection=2E-15 hXsection=2E-15) ) } PIN DIODE Non Irradiated

At 1e15 a double junction appears at P+ volumen (device back side) LGAD All Models show a similar panorama CMS Model Electric Field along Y axis Back side detail 1e15 Front side Back side Front side detail At 1e15 a double junction appears at P+ volumen (device back side) 1e15 Electric Field Profiling

At 1e15 a double junction appears LGAD Delhi Models Electric Field along Y axis Front side Back side detail 1e15 Back side Front side detail At 1e15 a double junction appears at P+ volume Electric Field Profiling 1e15

LGAD7859D10-3 CV analysis This LGAD is fully depleted past 70V Capacitance shows a clear increase beyond 1e15 n/cm2 1/C2 formula is not clear beyond 1e14 Now, we analyze a real device, the PAD LGAD7859D10-3 It has JTE’s, 300 mm thickness one extraction ring. CV Analysis with: New Perugia Model: Fresh 2. 1e13-1e14-1e15-7e15-2e16 n/cm2 Temperature = 20ºC

LGAD7859D10-3 CV analysis IV Analysis with: New Perugia Model: Fresh 2. 1e13-1e14-1e15-7e15-2e16 n/cm2 Temperature = 20ºC IV plots show problems starting at 1e15, the leakage grows a lot and even the general curve is different. This is coincident with the previous models.

LGAD7859D10-3 CV analysis IV Analysis with: New Perugia Model: Fresh 2. 1e13-1e14-1e15-7e15-2e16 n/cm2 Temperature = 20ºC IV plots show problems starting at 1e15, the leakage grows a lot and even the general curve is different. This is coincident with the previous models.

LGAD7859D10-3 CV analysis IV Analysis with: New Perugia Model: Fresh 2. 1e13-1e14-1e15-7e15-2e16 n/cm2 Temperature = 20ºC IV plots show problems starting at 1e15, the leakage grows a lot and even the general curve is different. This is coincident with the previous models.

LGAD7859D10-3 CV analysis IV Analysis with: New Perugia Model: Fresh 2. 1e13-1e14-1e15-7e15-2e16 n/cm2 Temperature = 20ºC IV plots show problems starting at 1e15, the leakage grows a lot and even the general curve is different. This is coincident with the previous models.

Laserback LGAD7958D10-3 20ºC Equiv. PIN Detector, 700V bias (an LGAD without mult.P layer) Fluence n/cm2 Charge LGAD (nC) Charge PIN (nC) Gain Qlgad/Qpin 1,538 0,460 3,34 1e13 1,510 0,456 3,31 1e14 1,265 0,421 3,00 1e15 0,358 0,153 2,34 7e15 0,005 FAIL --- 2e16 0,002 Refined models show same conclusions: beyond 1e15 n/cm2 the 300 mm LGAD has problems (but for PIN are worst!) LGAD Detector 300 mm 700V bias (We compare LGAD and PIN at same fluence to obtain a practical Gain Definition)

Laserback LGAD7958D10-3 -20ºC PIN Detector 700 V bias (LGAD without mult. P Layer) Fluence n/cm2 Charge LGAD (nC) Charge PIN (nC) Gain Qlgad/Qpin 1e13 1,743 0,4502 3,87 1e14 1,454 0,4222 3,53 1e15 0,561 0,2477 2,17 7e15 0,065 0,0175 3,61 2e16 0,028 FAIL --- Lowering to 253 K improves the radiation hardness, as expected, but avoid false friends (7e15 case, PIN is failing) LGAD Detector 300 mm 700V bias (We compare LGAD and PIN at same fluence to obtain a practical Gain Definition)

LGAD7859D10-3 50 mm thickness CV analysis This LGAD is fully depleted past 35V Capacitance shows a moderate increase beyond 7e15 n/cm2 1/C2 formula is not clear beyond 7e15 Displacement damage scalates down with decreasing device thickness, so let’s explore that avenue: we have gain so signal volumen reduction is compensated by the linear avalanche. The CV for fluence panoplia shows a full depleted device beyond 40V in a thinned LGAD7859 (50 mm thickness). New Perugia Model: Fresh 2. 1e13-1e14-1e15-7e15-2e16 n/cm2 Temperature = 20ºC

50 mm IV IV Analysis with: New Perugia Model: Fresh 2. 1e13-1e14-1e15-7e15-2e16 n/cm2 Temperature = 20ºC IV plots shows a promising behaviour even at 7e15 n/cm2. These are good news so it’s worth to look at the simulated back laser experiments.

50 mm IV IV Analysis with: New Perugia Model: Fresh 2. 1e13-1e14-1e15-7e15-2e16 n/cm2 Temperature = 20ºC IV plots shows a promising behaviour even at 7e15 n/cm2. These are good news so it’s worth to look at the simulated back laser experiments.

50 mm IV IV Analysis with: New Perugia Model: Fresh 2. 1e13-1e14-1e15-7e15-2e16 n/cm2 Temperature = 20ºC IV plots shows a promising behaviour even at 7e15 n/cm2. These are good news so it’s worth to look at the simulated back laser experiments.

50 mm IV IV Analysis with: New Perugia Model: Fresh 2. 1e13-1e14-1e15-7e15-2e16 n/cm2 Temperature = 20ºC IV plots shows a promising behaviour even at 7e15 n/cm2. These are good news so it’s worth to look at the simulated back laser experiments.

Laserback 50 mm (thinned) LGAD7958D10-3 20ºC Equiv. PIN Detector, 150V bias LGAD Detector 50 mm 150V bias Fluence n/cm2 Charge LGAD (nC) Charge PIN (nC) Gain Qlgad/Qpin 1,337 0,456 2,93 1e13 1,331 0,455 1e14 1,282 0,474 2,74 1e15 0,934 0,384 2,43 7e15 0,349 0,212 1,65 2e16 0,137 0,045 3,04 Thinning the LGAD it is a game changer for radiation hardness if we trust Synopsys TCAD. Experiments will tell. (We compare LGAD and PIN at same fluence to obtain a practical Gain Definition)

Conclusions LGAD model from CNM, with JTE, guard rings, p-stops and c-stops. The 300 mm device withstand radiation damage up to 1e14 neq/cm2, fails approaching 1e15 neq/cm2 Main fail mechanism: double junction The 50 mm device withstand radiation damage beyond 7e15 neq/cm2, moderate fail at 2e16 neq/cm2. Could it be the solution?, Experiments will tell

Thanks for your attention fpalomo@us.es