Introduction to the Six Trigonometric Functions & the Unit Circle

Slides:



Advertisements
Similar presentations
The Inverse Trigonometric Functions Section 4.2. Objectives Find the exact value of expressions involving the inverse sine, cosine, and tangent functions.
Advertisements

7.3 Trigonometric Functions of Angles. Angle in Standard Position Distance r from ( x, y ) to origin always (+) r ( x, y ) x y  y x.
Pre calculus Problem of the Day Homework: p odds, odds, odds On the unit circle name all indicated angles by their first positive.
5.1 Inverse sine, cosine, and tangent
1 7.3 Evaluating Trig Functions of Acute Angles In this section, we will study the following topics: Evaluating trig functions of acute angles using right.
Reciprocal Trig Functions Section The Reciprocal Functions  cosecant (csc θ)=  secant (sec θ)=  cotangent (cot θ)=
4.3 Right Triangle Trigonometry Pg. 484 # 6-16 (even), (even), (even) –Use right triangles to evaluate trigonometric functions –Find function.
12-2 Trigonometric Functions of Acute Angles
Bell Work Find all coterminal angles with 125° Find a positive and a negative coterminal angle with 315°. Give the reference angle for 212°.
Section 4.2 Trigonometric Functions: The Unit Circle
13.7 (part 2) answers 34) y = cos (x – 1.5) 35) y = cos (x + 3/(2π)) 36) y = sin x –3π 37) 38) y = sin (x – 2) –4 39) y = cos (x +3) + π 40) y = sin (x.
Do Now: Graph the equation: X 2 + y 2 = 1 Draw and label the special right triangles What happens when the hypotenuse of each triangle equals 1?
Right Triangle Trigonometry
Graphs of the Trig Functions Objective To use the graphs of the trigonometric functions.
14.2 The Circular Functions
5.3 The Unit Circle. A circle with center at (0, 0) and radius 1 is called a unit circle. The equation of this circle would be So points on this circle.
4.4 Trigonmetric functions of Any Angle. Objective Evaluate trigonometric functions of any angle Use reference angles to evaluate trig functions.
Finding Trigonometric Function Values using a Calculator Objective: Evaluate trigonometric functions using a calculator.
Objective: use the Unit Circle instead of a calculator to evaluating trig functions How is the Unit Circle used in place of a calculator?
Reciprocal functions secant, cosecant, cotangent Secant is the reciprocal of cosine. Reciprocal means to flip the ratio. Cosecant is the reciprocal of.
Warm up Solve for the missing side length. Essential Question: How to right triangles relate to the unit circle? How can I use special triangles to find.
Radian Measure One radian is the measure of a central angle of a circle that intercepts an arc whose length equals a radius of the circle. What does that.
Aims: To know the relationship between the graphs and notation of cosine, sine and tan, with secant, cosecant and cotangent. To be able to state the domain.
4.2 Trig Functions of Acute Angles. Trig Functions Adjacent Opposite Hypotenuse A B C Sine (θ) = sin = Cosine (θ ) = cos = Tangent (θ) = tan = Cosecant.
Section 3 – Circular Functions Objective To find the values of the six trigonometric functions of an angle in standard position given a point on the terminal.
Lesson 46 Finding trigonometric functions and their reciprocals.
Trigonometry Section 4.2 Trigonometric Functions: The Unit Circle.
Bellringer 3-28 What is the area of a circular sector with radius = 9 cm and a central angle of θ = 45°?
Section 4.2 The Unit Circle. Has a radius of 1 Center at the origin Defined by the equations: a) b)
4.4 Day 1 Trigonometric Functions of Any Angle –Use the definitions of trigonometric functions of any angle –Use the signs of the trigonometric functions.
13.1 Right Triangle Trigonometry ©2002 by R. Villar All Rights Reserved.
13.1 Right Triangle Trigonometry. Definition  A right triangle with acute angle θ, has three sides referenced by angle θ. These sides are opposite θ,
Bell Work 1.Find all coterminal angles with 125° 1.Find a positive and a negative coterminal angle with 315°. 1.Give the reference angle for 212°. 1.Find.
Find the values of the six trigonometric functions for 300
Trigonometric Functions: The Unit Circle
Trigonometry.
Right Triangle Trigonometry
Trigonometric Functions:Unit Circle
Lesson Objective: Evaluate trig functions.
The Other Trigonometric Functions
Section 4.2 The Unit Circle.
Trigonometric Functions: The Unit Circle Section 4.2
HW: Worksheet Aim: What are the reciprocal functions and cofunction?
The Unit Circle Today we will learn the Unit Circle and how to remember it.
Trigonometric Functions: The Unit Circle 4.2
Pre-Calc: 4.2: Trig functions: The unit circle
Trigonometric Function: The Unit circle
Activity 4-2: Trig Ratios of Any Angles
Lesson 4.2 Trigonometric Functions: The Unit Circle
Lesson 4.4 Trigonometric Functions of Any Angle
T2.1 d To Use The Calculator To Find All Trig Values
2. The Unit circle.
Chapter 8: Trigonometric Functions And Applications
Warm – Up: 2/4 Convert from radians to degrees.
Trigonometric Functions: The Unit Circle (Section 4-2)
Right Triangle Ratios Chapter 6.
Unit 7B Review.
Warm-Up: February 3/4, 2016 Consider θ =60˚ Convert θ into radians
Warm-Up: Give the exact values of the following
Right Triangle Ratios Chapter 6.
Graphs of Secant, Cosecant, and Cotangent
Chapter 8: Trigonometric Functions And Applications
The Inverse Trigonometric Functions (Continued)
Introduction to College Algebra & Trigonometry
Trigonometric Functions: The Unit Circle
Math /4.4 – Graphs of the Secant, Cosecant, Tangent, and Cotangent Functions.
Trigonometric Functions: Unit Circle Approach
Trigonometric Functions: The Unit Circle 4.2
WArmup Rewrite 240° in radians..
Academy Algebra II THE UNIT CIRCLE.
Presentation transcript:

Introduction to the Six Trigonometric Functions & the Unit Circle 1.2 Introduction to the Six Trigonometric Functions & the Unit Circle

(0,1)  (-1,0)  (1,0)  (0,-1)

 (?,?) (1,0)  = = 2 (0,1) 1 1 1 y x 2 (-1,0)  x 2 x = 2 (0,-1) 45 1 2 (0,1)  (?,?) 1 y = 1 2 x (-1,0)  (1,0) x x = 2 2  (0,-1) = 1 2 y y = 2 2

   (1,0)    (0,1) (-2/2, 2/2) (2/2, 2/2) (-1,0)  (-2/2, -2/2) (2/2, -2/2)  (0,-1)

  (?,?) (1,0)  = = 3 1 2 (0,1) 1 y 1 2 x (-1,0)  x x = 1 2 60 30 3 1 2 (0,1)   (?,?) 1 y = 1 2 x (-1,0)  (1,0) x x = 1 2  (0,-1) y 3 1 2 = y = 3 2

     (1,0)      (0,1) (-1/2, 3/2) (1/2, 3/2) (-2/2, 2/2) (2/2, 2/2)   (-1,0)  (1,0)   (-2/2, -2/2)  (2/2, -2/2)  (-1/2, -3/2)  (1/2, -3/2) (0,-1)

  (?,?) (1,0)  = = 1 2 3 (0,1) x 3 1 2 1 y (-1,0)  x = 3 2 x 60 30 1 2 3 (0,1)  x 3 1 2 =  (?,?) 1 y (-1,0)  (1,0) x = 3 2 x  (0,-1) = 1 2 y y = 1 2

       (1,0)        (0,1) (-1/2, 3/2) (1/2, 3/2) (-2/2, 2/2) (2/2, 2/2)   (-3/2, 1/2) (3/2, 1/2)   (-1,0)  (1,0)   (-3/2, -1/2) (3/2, -1/2)   (-2/2, -2/2)  (2/2, -2/2)  (-1/2, -3/2)  (1/2, -3/2) (0,-1)

The six trigonometric functions… Sine – sin Cosine – cos Tangent – tan Cosecant – csc Secant – sec Cotangent - cot

Unit Circle Definitions of the 6 Trig. Functions… csc = 1 y sin = y sec = 1 x cos = x cot = x y tan = y x

Practice: Determine the exact value of each without the aid of a calculator. sin =  3 cos = 5 6 tan = 3 2 csc =  sec =  2 cot = 4 3

Practice: Determine the exact value of each without the aid of a calculator. sin 120= cos 300 = tan 45= csc 90= sec 210= cot 0=

Practice: Determine the exact value of each without the aid of a calculator. sin 405= cos 540 = tan (-300)= csc (-120)= sec 855= cot 945=

Practice: Determine the exact value of each without the aid of a calculator. sin = 19 6 cos = 5 Tan = -2 3 csc = 11 4 sec = 9 2 cot = -8 3

Using the Calculator to Evaluate the 6 Trig. Functions… sin 212= sin (212)= -.5299 cos 319= cos (319)= .7547 tan (-402)= tan (-402)= -.9004 Be sure your calculator is set in Degree Mode…or you will get an incorrect answer.

Using the Calculator to Evaluate the 6 Trig. Functions… sin /8= sin (/8)= .3827 cos 5/7 = cos (5/7 )= -.6235 tan (- 2/9 )= tan (- 2/9 )= -.8391 Be sure your calculator is set in Radian Mode…or you will get an incorrect answer.

What if there is no calculator button?.... csc 48= sin (48)= .7431 x-1 =1.3456 Since it is the reciprocal of the sin…use the sin button then reciprocate it… x-1 sec 153= cos (153)= -.8910 x-1 =-1.1223 =-.2679 cot (-75)= tan (-75)= -3.7321 x-1