GEMDM: SOFTWARE/PERFORMANCE Michel Desgagné Recherche en Prévision Numérique Environment Canada - MSC/RPN Environment Canada
OUTLINE Grid configurations LAM implementation Distributed Memory implementation: GEMDM
Gem_settings.nml &grid Grd_typ_S = 'LU' , Grd_ni = 60 , Grd_nj = 60 , Grd_xlon1 = 270. , Grd_xlat1 = 45., Grd_xlon2 = 360. , Grd_xlat2 = 45., Grd_iref = 40 , Grd_jref = 40 , Grd_lonr = 300. , Grd_latr = 20., Grd_dx = 1.9 , Grd_dy = 1.9, / &ptopo PtOPo_Npex = 1 , PtoPo_npey = 1 , Ptopo_nblocx = 1 , Ptopo_nblocy = 1 , / &gement / &gem_cfgs / &physics_cfgs phy_pck_version = 'RPN-CMC_4.5', /
Grd_xlon1 = 180. Grd_xlat1 = 0. Grd_xlon2 = 270. Grd_xlat2 = 0., 270.0, 0.0 180.0, 0.0 0. 360. -90. 90. Grd_typ_S = ‘GU' , Grd_ni = 60 , Grd_nj = 30 , Grd_xlon1 = 270. , Grd_xlat1 = 45., Grd_xlon2 = 360. , Grd_xlat2 = 45., Grd_typ_S = ‘GV' , Grd_ni = 60 , Grd_nj = 30 , Grd_nila = 22 , Grd_njla = 6 , Grd_dx = 0.9 , Grd_dy = 0.9, Grd_xlon1 = 270. , Grd_xlat1 = 45., Grd_xlon2 = 360. , Grd_xlat2 = 45., 270.0, 0.0 270.0, 90.0 Lat` != Lat Lon` != Lon 270.0, 0.0 0.0, 0.0 0. 360. -90. 90. Lat` = Lat Lon` != Lon 270.0, 45.0 0.0, 45.0 Grd_xlon1 = 180. Grd_xlat1 = 0. Grd_xlon2 = 270. Grd_xlat2 = 0.,
Software: grille -xrec 360.0,90.0 Grd_ni = 30 , Grd_nj = 30 Grd_iref= 15 , Grd_jref= 15 Grd_lonr= 180., Grd_latr= 0. Grd_ni = 30 , Grd_nj = 20 Grd_iref= 1 , Grd_jref= 20 Grd_lonr= 40. , Grd_latr= 0. Grd_ni = 10 , Grd_nj = 30 Grd_iref= 1 , Grd_jref= 1 Grd_lonr= 300., Grd_latr= 20. 0.0,-90.0 Grd_typ_S = 'LU' , Grd_xlon1 = 270. , Grd_xlat1 = 45., Grd_xlon2 = 360. , Grd_xlat2 = 45., Grd_dx = 1.9 , Grd_dy = 1.9,
GEM: A short description Finite-differences on Arakawa C lat-lon horizontal grid Hydrostatic pressure s-type vertical coordinate with hybrid formulation high-order horizontal diffusion Full CMC/RPN physics package Global or LAM lat-lon grid point model Primitive equations Non-Hydrostatic 2-time-level fully implicit Semi-Lag discretization Elliptic problem: direct solver (data transpose in DM configurations)
An Acid Test for LAM Regional Modelling: A Theoretical Discussion A An Acid Test for LAM Regional Modelling: A Theoretical Discussion A. Staniforth, 1995 (Meteor. Atmos. Phys.) At same horizontal and temporal resolution, how well can a LAM reproduce the solution of a large domain on any smaller subdomain 6 timesteps GU 6 timesteps LU Is it that important? Our current Acid test includes: The whole diabatic kernel + horizontal diffusion
Layout (2) Free Domain Computational zone Never Used Forced Boundary Conditions (7 points) Not Used if LAM BCs for Elliptic Problem V OB-SLT Blending Zone: s= p*ext + (1-p)int p= cos**2 ( ) U 0.0 1.0 Free Domain Free Domain OB-SLT Computational zone 1 L_ni Halo xchg with neighboring PEs