GEMDM: SOFTWARE/PERFORMANCE

Slides:



Advertisements
Similar presentations
Stable Fluids A paper by Jos Stam.
Advertisements

Weather Research & Forecasting: A General Overview
A Shared Atmosphere-Ocean Dynamical Core: First Validation (Semi-Implicit Semi-Lagrangian) Pierre Pellerin(2), François Roy(1,3), Claude Girard(2), François.
1 Numerical Simulation for Flow in 3D Highly Heterogeneous Fractured Media H. Mustapha J. Erhel J.R. De Dreuzy H. Mustapha INRIA, SIAM Juin 2005.
An Introduction to Light Fields Mel Slater. Outline Introduction Rendering Representing Light Fields Practical Issues Conclusions.
WWOSC 2014 Montreal, Canada Running operational Canadian NWP models on next-generation supercomputers Michel Desgagné, Abdessamad Qaddouri, Janusz.
Ground-Water Flow and Solute Transport for the PHAST Simulator Ken Kipp and David Parkhurst.
Everything you want to know on GEMDM but were afraid to ask … V.Lee, M. Desgagné.
ECE669 L4: Parallel Applications February 10, 2004 ECE 669 Parallel Computer Architecture Lecture 4 Parallel Applications.
Eta Model. Hybrid and Eta Coordinates ground MSL ground Pressure domain Sigma domain  = 0  = 1  = 1 Ptop  = 0.
UQAM/EC Canadian Contribution to MAP D-PHASE R. McTaggart-Cowan, M. Desgagne, J. Cote, S. Gravel, C. Girard, A. Erfani, J. Milbrandt, C. Jones University.
2005 ROMS Users Meeting Monday, October 24, 2005 Coupled sea-ice/ocean numerical simulations of the Bering Sea for the period 1996-present Enrique Curchitser.
Network and Grid Computing –Modeling, Algorithms, and Software Mo Mu Joint work with Xiao Hong Zhu, Falcon Siu.
Dr. Jennifer Parham-Mocello. What is an IDE? IDE – Integrated Development Environment Software application providing conveniences to computer programmers.
1 Parallel Simulations of Underground Flow in Porous and Fractured Media H. Mustapha 1,2, A. Beaudoin 1, J. Erhel 1 and J.R. De Dreuzy IRISA – INRIA.
FIM basics Rainer Bleck, Shan Sun, Tanya Smirnova (and a host of other contributors too numerous to mention) NOAA Earth System Research Laboratory, Boulder,
Solution of the Implicit Formulation of High Order Diffusion for the Canadian Atmospheric GEM Model “High Performance Computing and Simulation Symposium.
Status of Dynamical Core C++ Rewrite (Task 5) Oliver Fuhrer (MeteoSwiss), Tobias Gysi (SCS), Men Muhheim (SCS), Katharina Riedinger (SCS), David Müller.
Regional GEM 15 km OPERATIONAL 48-h RUN (00 or 12 UTC) EVENT GEM-LAM 2.5 km GEM-LAM 1 km MC2-LAM 250 m T+5 T+12 T-1 T-3 36-h run 15-h run 6-h run Microscale.
Mind maps (from interviews) Atmosphere.mm Ocean.mm Mind maps (from interviews) Atmosphere.mm Ocean.mm Query tools CIM software.png CIM software.png CIM.
GEM in the GEWEX Transferability Study Zav Kothavala, Colin Jones, Katja Winger, Bernard Dugas & Ayrton Zadra.
A particle-gridless hybrid methods for incompressible flows
Non-hydrostatic Numerical Model Study on Tropical Mesoscale System During SCOUT DARWIN Campaign Wuhu Feng 1 and M.P. Chipperfield 1 IAS, School of Earth.
Higher Resolution Operational Models. Operational Mesoscale Model History Early: LFM, NGM (history) Eta (mainly history) MM5: Still used by some, but.
A baroclinic instability test case for dynamical cores of GCMs Christiane Jablonowski (University of Michigan / GFDL) David L. Williamson (NCAR) AMWG Meeting,
Tout ce que vous avez toujours voulu savoir sur GEMDM sans jamais oser le demander… V.Lee, M. Desgagné.
KoreaCAM-EULAG February 2008 Implementation of a Non-Hydrostatic, Adaptive-Grid Dynamics Core in the NCAR Community Atmospheric Model William J. Gutowski,
“Very high resolution global ocean and Arctic ocean-ice models being developed for climate study” by Albert Semtner Extremely high resolution is required.
Sensitivity Study of a Coupled Carbon Dioxide Meteorological Modeling System with Case Studies András Zénó Gyöngyösi, Tamás Weidinger, László Haszpra,
Recent Developments in the NRL Spectral Element Atmospheric Model (NSEAM)* Francis X. Giraldo *Funded.
1 The Nonhydrostatic Icosahedral (NIM) Model: Description and Potential Use in Climate Prediction Alexander E. MacDonald Earth System Research Lab Climate.
Gas-kineitc MHD Numerical Scheme and Its Applications to Solar Magneto-convection Tian Chunlin Beijing 2010.Dec.3.
Outline Introduction Research Project Findings / Results
Computation and analysis of the Kinetic Energy Spectra of a SI- SL Model GRAPES Dehui Chen and Y.J. Zheng and Z.Y. Jin State key Laboratory of Severe Weather.
Convective Instability in quasi 2D foams Eric Janiaud, Stefan Hutzler, Denis Weaire. Trinity College, Dublin
NCAS Unified Model Introduction Part 4b: UM Limited Area Models University of Reading, 3-5 December 2014.
Materials Process Design and Control Laboratory Sibley School of Mechanical and Aerospace Engineering 169 Frank H. T. Rhodes Hall Cornell University Ithaca,
Modeling orographic flows on unstructured meshes Piotr Smolarkiewicz, National Center for Atmospheric Research*, USA; Joanna Szmelter, Loughborough University,
Vincent N. Sakwa RSMC, Nairobi
Development of an Atmospheric Climate Model with Self-Adapting Grid and Physics Joyce E. Penner 1, Michael Herzog 2, Christiane Jablonowski 3, Bram van.
Hurricane Model Transitions to Operations at NCEP/EMC 2006 IHC Conference, Mobile, AL Robert Tuleya, S. Gopalkrishnan, Weixing Shen, N. Surgi, and H.Pan.
The Application of the Multigrid Method in a Nonhydrostatic Atmospheric Model Shu-hua Chen MMM/NCAR.
Computational Modeling of 3D Turbulent Flows With MC2 Claude Pelletier Environment Canada MSC / MRB.
Lecture Objectives: - Numerics. Finite Volume Method - Conservation of  for the finite volume w e w e l h n s P E W xx xx xx - Finite volume.
Interfacing Model Components CRTI RD Project Review Meeting Canadian Meteorological Centre August 22-23, 2006.
3. Modelling module 3.1 Basics of numerical atmospheric modelling M. Déqué – CNRM – Météo-France J.P. Céron – DClim – Météo-France.
Application of Design Patterns to Geometric Decompositions V. Balaji, Thomas L. Clune, Robert W. Numrich and Brice T. Womack.
March 2014 UM Limited Area Models What constitutes a LAM How to set one up in the UM How to start a LAM How to keep a LAM going Nesting LAMS Cascade example.
Introduction to the Turbulence Models
Xing Cai University of Oslo
Free vs. Forced Convection
Kazushi Takemura, Ishioka Keiichi, Shoichi Shige
Variable Mercator Map Factor at the HARMONIE Model
Scientific Computing Lab
F. Trotta, N.Pinardi, E. Fenu, A. Grandi
Harvard Ocean Prediction System (HOPS)
seasonal prediction for Myanmar
Deflated Conjugate Gradient Method
Outlines of NICAM NICAM (Nonhydrostatic ICosahedral Atmospheric Model)
L Ge, L Lee, A. Candel, C Ng, K Ko, SLAC
Scientific Computing Lab
Bill Scheftic Atmo 558 May 6th 2008
Lidia Cucurull, NCEP/JCSDA
Bogdan Rosa1, Marcin Kurowski1, Damian Wójcik1,
Vertical Coordinates and Nesting
Conservative Dynamical Core (CDC)
Supervisor: Eric Chassignet
CASA Day 9 May, 2006.
GungHo! A new dynamical core for the Unified Model Nigel Wood, Dynamics Research, UK Met Office © Crown copyright Met Office.
Atmospheric modelling of HMs Sensitivity study
Presentation transcript:

GEMDM: SOFTWARE/PERFORMANCE Michel Desgagné Recherche en Prévision Numérique Environment Canada - MSC/RPN Environment Canada

OUTLINE Grid configurations LAM implementation Distributed Memory implementation: GEMDM

Gem_settings.nml &grid Grd_typ_S = 'LU' , Grd_ni = 60 , Grd_nj = 60 , Grd_xlon1 = 270. , Grd_xlat1 = 45., Grd_xlon2 = 360. , Grd_xlat2 = 45., Grd_iref = 40 , Grd_jref = 40 , Grd_lonr = 300. , Grd_latr = 20., Grd_dx = 1.9 , Grd_dy = 1.9, / &ptopo PtOPo_Npex = 1 , PtoPo_npey = 1 , Ptopo_nblocx = 1 , Ptopo_nblocy = 1 , / &gement / &gem_cfgs / &physics_cfgs phy_pck_version = 'RPN-CMC_4.5', /

Grd_xlon1 = 180. Grd_xlat1 = 0. Grd_xlon2 = 270. Grd_xlat2 = 0., 270.0, 0.0 180.0, 0.0 0. 360. -90. 90. Grd_typ_S = ‘GU' , Grd_ni = 60 , Grd_nj = 30 , Grd_xlon1 = 270. , Grd_xlat1 = 45., Grd_xlon2 = 360. , Grd_xlat2 = 45., Grd_typ_S = ‘GV' , Grd_ni = 60 , Grd_nj = 30 , Grd_nila = 22 , Grd_njla = 6 , Grd_dx = 0.9 , Grd_dy = 0.9, Grd_xlon1 = 270. , Grd_xlat1 = 45., Grd_xlon2 = 360. , Grd_xlat2 = 45., 270.0, 0.0 270.0, 90.0 Lat` != Lat Lon` != Lon 270.0, 0.0 0.0, 0.0 0. 360. -90. 90. Lat` = Lat Lon` != Lon 270.0, 45.0 0.0, 45.0 Grd_xlon1 = 180. Grd_xlat1 = 0. Grd_xlon2 = 270. Grd_xlat2 = 0.,

Software: grille -xrec 360.0,90.0 Grd_ni = 30 , Grd_nj = 30 Grd_iref= 15 , Grd_jref= 15 Grd_lonr= 180., Grd_latr= 0. Grd_ni = 30 , Grd_nj = 20 Grd_iref= 1 , Grd_jref= 20 Grd_lonr= 40. , Grd_latr= 0. Grd_ni = 10 , Grd_nj = 30 Grd_iref= 1 , Grd_jref= 1 Grd_lonr= 300., Grd_latr= 20. 0.0,-90.0 Grd_typ_S = 'LU' , Grd_xlon1 = 270. , Grd_xlat1 = 45., Grd_xlon2 = 360. , Grd_xlat2 = 45., Grd_dx = 1.9 , Grd_dy = 1.9,

GEM: A short description Finite-differences on Arakawa C lat-lon horizontal grid Hydrostatic pressure s-type vertical coordinate with hybrid formulation high-order horizontal diffusion Full CMC/RPN physics package Global or LAM lat-lon grid point model Primitive equations Non-Hydrostatic 2-time-level fully implicit Semi-Lag discretization Elliptic problem: direct solver (data transpose in DM configurations)

An Acid Test for LAM Regional Modelling: A Theoretical Discussion A An Acid Test for LAM Regional Modelling: A Theoretical Discussion A. Staniforth, 1995 (Meteor. Atmos. Phys.) At same horizontal and temporal resolution, how well can a LAM reproduce the solution of a large domain on any smaller subdomain 6 timesteps GU 6 timesteps LU Is it that important? Our current Acid test includes: The whole diabatic kernel + horizontal diffusion

Layout (2) Free Domain Computational zone Never Used Forced Boundary Conditions (7 points) Not Used if LAM BCs for Elliptic Problem V OB-SLT Blending Zone: s= p*ext + (1-p)int p= cos**2 ( ) U 0.0 1.0 Free Domain Free Domain OB-SLT Computational zone 1 L_ni Halo xchg with neighboring PEs