Prime Numbers.

Slides:



Advertisements
Similar presentations
Practice Problems: The Composition of Functions Work problems on your own first. Then check with answers in the following slides. If the answers don’t.
Advertisements

Ch 4 Sec 2: Slide #1 Columbus State Community College Chapter 4 Section 2 Writing Fractions in Lowest Terms.
Prime Factorisation Factor Trees
Factors, Divisibility, & Prime / Composite numbers
Find the HCF and LCM When finding the HCF and LCM of relatively low/easy numbers we can use the methods that we are used to such as find the HCF and LCM.
Types of Number
Everyday Math 5th Grade: Unit One.
Long Multiplication What is long multiplication?
Addition and Subtraction Investigation Algorithm for the investigation 1. Choose two or three numbers. 2. Arrange them in order, biggest first. 3. Reverse.
Factors Terminology: 3  4 =12
Consecutive Numbers An Investigation.
Prime Factorization (Factor Trees) Greatest Common Factor
Copy this square exactly and shade in a quarter in as many different ways as you can. You have 5 minutes.
Multiplication by multiples of 10 and 100 Objective to multiply numbers when 0’s are involved.
Multiplication methods. Multiplying  Multiplication is mainly taught in three ways - the grid method, Chinese multiplication and traditional column method.
Long Multiplication! Foil Method! Example:
Unit 1 Review. Square Numbers A square number is a number that has the same numbers for its dimensions.
* Go for it! ** Fancy a challenge? *** Maths-tastic! * Draw 10 different lines. Estimate the length of each one and write your estimate on the line. Then.
Jeopardy Test Taking Strategies Math Vocabulary Fractions and Decimals Triangles Lines Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300 Q $400.
Multiplication Using Manipulatives & Algorithms for Whole-Number Multiplication.
Before learning how to do double digit multiplication, let’s review what multiplication is...
Lesson 5-4 Example Example 2 Find 14 ÷ 4. Show the remainder. 1.Rewrite the problem in vertical format.
Chapter 4: Multiply Decimals.
STEPS FOR MULTIPLYING A 2-DIGIT NUMBER BY ANOTHER 2-DIGIT NUMBER With Partial Products.
Prime Factorization. Prime Numbers A Prime Number is a whole number, greater than 1, that can be evenly divided only by 1 or itself.
Lesson #05 Prime Factorization Prime means: A # can only be divided by itself or 1 Example: 13 is prime cuz it’s only divisible evenly by 13 or 1 Factors:
Today we will be learning: how to carry out a survey how to organise results and show them as a bar chart.
Shape Names Diameter Radius Tangent Chord.
Multiplication Facts X 3 = 2. 8 x 4 = 3. 7 x 2 =
Types of numbers BTEOTSSBAT: Recognise even, odd, prime, square and triangle numbers Understand the terms factor and multiples Be able to express numbers.
Divisibility Rules. Skip Counting 1)Skip count by 3 from 3. 2)Skip count by 5 from 65. 3)Skip count by 10 from )Skip count by 6 from 138.
Section 13.7 Stem and Leaf and Histograms Objective: Students will make stem and leaf plots and histograms and use these to answer data questions. Standard:
Warm up… Factor Patterns Learning Objective: To investigate the factors of a number Success Criteria:  To be able to identify the factors of a number.
Whiteboardmaths.com © 2004 All rights reserved
Steps of Addition Move your mouse over each step to see the directions.
4-1 Divisibility Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes Lesson Quizzes.
Approximate Can I do it in my head using a mental strategy? Calculate Could I use some jottings to help me? Check it ! Should I use a written method to.
Everyday Math Algorithms
Grouped Frequency Tables
WHAT IS BINARY? Binary is a number system that only uses two digits: 1 and 0. Any information that processed by a computer it is put into sequence of.
Expanded Short multiplication How it should look (for 45 X 6)
3x + 2 6x3 - 5x2 – 12x – 4 2x2 – 3x – 2 6x3 + 4x2 -9x2 – 12x -9x2 – 6x
Types of numbers BTEOTSSBAT:
Using Spreadsheets Year 7 Key Stage 3 Unit 4.
Sort and display data There are many ways to collect, sort and represent data. Try these activities to learn a few.
Dividing Larger Dividends
2 Digit by 2 Digit Multiplication
Teacher Notes Take your own survey in class. Copy the tally marks into the table to get the count. Use the information you have gathered to create some.
Exercise 24 ÷ 2 12.
Frequency Tables and Histograms
Review Basic Math Divisibility tests Prime and Composite Numbers
Doubles and Halves Lets learn all about it.
Race Questions: Question 1
Square Numbers and Square Roots
Prime Factorization.
Median from Grouped Frequencies
Tests of Divisibility 1 - All integers can be divided by 1
Notes Solving a System by Elimination
Notes Solving a System by Elimination
Bar Chart The data must already be in Frequency Distribution form (see the presentation if needed).
Use Strategies and Properties to Multiply by 1-Digit Numbers
Factoring: A General Strategy
© T Madas.
Factoring Difference of Squares a2 – b2
Add and Subtract I explain what each digit represents in a four digit number. I can use materials or diagrams to explain how a 4-digit number could be.
Maths Unit 2 - Multiples, factors & primes
Maths Unit 1 (F) - Number Multiples Primes
Maths Unit 7 - Multiples, Factors, Primes & Negatives
Presentation transcript:

Prime Numbers

A prime number has only 2 factors: 1 and itself A prime number has only 2 factors: 1 and itself. 1 is not a prime factor as it has only 1 factor.

Finding the prime numbers between 1 & 100.

1. Shade in 1 as it is not a prime number. 2 1. Shade in 1 as it is not a prime number. 2. The first prime number is 2. Shade in all multiples of 2 (except 2) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

The next prime number is 3. Colour in all multiples of 3 (not 3) The next prime number is 3. Colour in all multiples of 3 (not 3). Some will have already been coloured in.   To check if larger numbers are factors of 3, add the digits together. If the total is a multiple of 3, then the number will be too. eg 87 8+7=15 (15 is a multiple of 3 so 87 is too)  

Multiples of 3 Coloured in already 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Multiples of 3 Coloured in already

The next prime number is 5. Colour in all multiples of 5 (not 5) The next prime number is 5. Colour in all multiples of 5 (not 5). Some will have already been coloured in.

Multiples of 5 Coloured in already 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Multiples of 5 Coloured in already

The next prime number is 7. Colour in all multiples of 7 (not 7) The next prime number is 7. Colour in all multiples of 7 (not 7). Some will have already been coloured in.

Multiples of 7 Coloured in already 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Multiples of 7 Coloured in already

The next prime number is 11 The next prime number is 11. However 11 x 11=121 121>100 There is no need to check for multiples of 11 if all the multiples of 2,3,5 & 7 have been coloured in. The remaining numbers are all prime numbers. There should be 25 of them.

Prime numbers between 1 - 100 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Prime numbers between 1 - 100

Extension: finding the prime numbers 101-200.

Besides finding multiples of 2,3,5 & 7, what other prime numbers will you need to find multiples of? Check the squares of the next few prime numbers:11, 13 & 17

11 x 11= 13 x 13= 17 x 17= 121 <200 Yes 169 <200 Yes 289 >200 No

Finding prime numbers between 101-200 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

Prime numbers 101-200 Multiples of 2 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 Multiples of 2

Multiples of 3 Coloured in already Prime numbers 101-200 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 60 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 Multiples of 3 Coloured in already

Multiples of 5 Coloured in already Prime numbers 101-200 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 60 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 Multiples of 5 Coloured in already

Multiples of 7 Coloured in already Prime numbers 101-200 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 60 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 Multiples of 7 Coloured in already

Multiples of 11 Coloured in already Prime numbers 101-200 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 60 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 Multiples of 11 Coloured in already

Multiples of 13 Coloured in already Prime numbers 101-200 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 60 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 Multiples of 13 Coloured in already

Prime numbers 101-200 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 60 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

Make a tally chart of the number of prime numbers in each 25 block: Frequency 1-25 26-50 51-75 76-100 101-125 126-150 151-175 176-200 Draw a bar chart of your results.

Make an intelligent estimate of how many prime numbers there will be in the next four 25 blocks: 201-225 226-250 251-275 276-300 (answers on next slide)

Range Prime numbers Frequency 201-225 211,223 2 226-250 227,229,233,239,241 5 251-275 251,257,263,269,271 276-300 277,281,283,293 4

Draw a graph of your results. Make a tally chart of the last digit (units) of each prime number between 1-200 Last digit Tally Frequency 1 2 3 4 5 6 7 8 9 Draw a graph of your results.

a) Which 4 digits are never at the end of a prime number a) Which 4 digits are never at the end of a prime number? b) Which 2 digits are only each found at the end of one prime number? c) Which four digits do most prime numbers end with? d) Which is the most common digit in the units column of prime numbers?    

Finally: choose a prime number (not 2) Square it Finally: choose a prime number (not 2) Square it. + 5 ÷ 8 What is the remainder?

6