Animal Body Plans Chapter 3, Zoology.

Slides:



Advertisements
Similar presentations
Introduction to Kingdom Animalia
Advertisements

Classification, Phylogeny, & Organization
ANIMAL DIVERSITY. YOU MUST KNOW… THE CHARACTERISTICS OF ANIMALS THE STAGES OF ANIMAL DEVELOPMENT HOW TO SORT THE ANIMAL PHYLA BASED ON SYMMETRY, DEVLOPMENT.
ANIMAL DIVERSITY.
Chapter 32 Reading Quiz From which kingdom did animals most likely evolve? What is the only group of animals that do not possess “true tissues”? A sea.
Animal Architecture Levels of organization in organismal complexity.
UNIT 15: ANIMAL KINGDOM. What characteristics are common to all animals?  Eukaryotic cells  NO cell wall  Multicellular  Cell specialization  Heterotrophic.
Introduction to Animals
Chapter 32 – Animal Diversity
Animal Body Plans Chapter 3, Zoology.
9-1 CHAPTER 9 Architectural Pattern of an Animal.
Overview of Animal Diversity
23.1 Animal Characteristics Animals Animal Characteristics Multicellular Heterotrophic Lack cell walls Sexual Reproduction Movement Specialization.
Animals = invertebrates and vertebrates (95% of all animals are invertebrates)
ANIMAL KINGDOM. Main Characteristics Multicellular eukaryotes Heterotrophs Specialized cells; most have tissues Response to stimuli by nervous and muscular.
CHARACTERISTICS OF ANIMALS: WELCOME TO YOUR KINGDOM! Adapted from Kim Foglia - April 2015.
An Introduction to Animal Diversity Chapter 32. Characteristics of Animals Multi-cellular Heterotrophic eukaryotes - ingestion Lack cell walls – collagen.
Chapter 32 An Introduction to Animal Diversity. Characteristics of Animals Animals are: Multicellular Heterotrophs Eukaryotic Have tissues and differentiated.
Objective: Intro to Animal Diversity. Heterotrophs that ingest food Multicellular with structural proteins Develop from embryonic layers Animal Characteristics.
Animal Evolution. The Basics  Animals = multicellular, heterotrophic  Life history: – Sexual w/ flagellated sperm/nonmotile egg –Development: cleavage,
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Introduction to Animal Diversity Packet #76 Chapter #32.
The Animal Kingdom. Anatomical Positions ANTERIOR POSTERIOR DORSAL VENTRAL.
KINGDOM ANIMALIA.
Introduction to Animal Kingdom
What is an Animal? Eukaryotes Multicellular Heterotrophs Have ways to move, reproduce, obtain food, protect themselves; lots of kinds of specialized cells.
Chapter 32 Introduction to Animal Diversity. Animal Characteristics 1.) All are heterotrophs & must ingest food to digest it. 2.) All eukaryotic and multicellular.
Characteristics of Animals Section Features of Animals: # 1: Heterotrophy & Mobility Animals cannot make their own food Most animals move to find.
An Introduction to Animal Diversity
Domain: Eukarya Kingdom: Animalia Evolutionary trends among organisms within the Kingdom Animalia.
Animal Kingdom Phylogeny - Cladogram
  Organelle → one of several formed bodies with specialized functions suspended in the cytoplasm of a cell.  Cell → smallest single unit that exhibits.
The Animal Kingdom. Anatomical Positions ANTERIOR POSTERIOR DORSAL VENTRAL.
The Origin of Animal Diversity. What is an animal? Animals are: Multicellular Heterotrophic Eukaryotic Animals store energy as glycogen (not starch, as.
Diversity of Life - Animals- (General Features)
Overview: Welcome to Your Kingdom
Overview of Animal Diversity
Tissue Complexity Most animals have closely functioning tissues.
Introduction to Animals
Multicellular eukaryotes Heterotrophy by ingestion
Chapter 9 Architectural Patterns of An Animal
Stages of Animal Development and Body Form.
Lecture #14 Date ______ Chapter 32 ~ Introduction to Animal Evolution.
Animal Diversity.
Introduction to Animal Diversity
An introduction to animal diversity
What is An Animal?.
Introduction to Animals
Animals.
Kingdom Animalia.
An Introduction to Animal Diversity
Introduction to Animal Evolution
Introduction to Animals
Characteristics of Animals
Intro to Zoology What is an animal?.
Architectural Pattern of an Animal
Introduction to Animals
Animals! Introduction.
ZOOLOGY—STUDY OF ANIMALS
The Kingdom Animalia Introduction
Introduction to Animal Evolution
Chapter 9: Architectural Pattern of an Animal Metazoans
Animal Architecture Zoology.
Characteristics of Animals
Typical Animal Characteristics
Trends in Animal Evolution
The Kingdom Animalia Introduction
The Origin of Animal Diversity
Animal Evolution.
Presentation transcript:

Animal Body Plans Chapter 3, Zoology

What is an Animal? An animal is a living organism that is multicellular, eukaryotic, heterotrophic, and lacks cell walls. Multicellular means an animal is made up of many cells. Eukaryotic means a cell that has a membrane-bound nucleus, and membrane-bound organelles. Heterotrophic means an organism that consumes plants or autotrophs. Animals have cell membranes but not cell walls.

Animal Body Designs Animals are made up of a complex system of cells. Cells make up different tissues of animal’s bodies. Tissues make up different organs in animal’s bodies. And organs make up different organ systems.

Animal Body Symmetry Symmetry in animals refers to the way in which a plane or planes of axis can divide the body. Animals with radial symmetry can be divided into similar halves by more than two planes. (examples include jellyfish, sea urchins, sea anenomes etc.) Animals with bilateral symmetry can be divided into equal left and right halves along the mid-sagittal plane. Animals with bilateral symmetry also exhibit cephalization (they have a head with a brain).

Animal Body Symmetry

Anatomical Orientation When studying the anatomy of animals, it is necessary to use terminology to describe directions, planes, and points of reference. Anterior/Posterior: A direction on an animals body referring to towards the head and/or tail. Dorsal/Ventral: A direction on an animals body referring to towards the spine and/or belly. Medial/Lateral: A direction referring to towards or away from the midline or mid-sagittal plane of the body. Distal/Proximal: A direction referring to farther away from and closer to another point of reference.

Anatomical Orientation

Anatomical Orientation Sagittal plane: An imaginary line or axis that goes through the body separating left and right halves. Frontal plane: An imaginary line or axis that goes through the body separating dorsal and ventral halves or sections. Transverse plane: An imaginary line or axis that goes through the body separating anterior and posterior halves or sections. Oral/Aboral: Animals with radial symmetry, oral refers to the mouth side, aboral is opposite of oral.

Anatomical Orientation

Early Embryonic Development After fertilization of an egg occurs, the egg becomes a zygote. Then, a zygote’s cells begin dividing in a process called cleavage. Some animals (like echinoderms and chordates) exhibit radial cleavage, in which the cleavage planes are symmetrical. Other animals (like molluscs and annelids) exhibit spiral cleavage, in which the cells divide in a spiral or asymmetrical pattern.

Radial vs. Spiral Cleavage

Body Plan Development Cleavage continues to occur in the zygote until the dividing cells begin to form a fluid-filled ball of cells which is called a blastula. Inside the blastula is a fluid-filled cavity called a blastocoel. In most animals, the blastula develops into a two-layered organism called a gastrula. The gastrula is made up of two layers called the endoderm and ectoderm. Later on these will form the outer and inner tissues and organs of the body.

Early Embryonic Development in Animals

Body Cavities The gastrocoel (cavity inside the gastrula) develops into a digestive cavity in most adult animals. Some animals such as the sea anemone never advance beyond the gastrula stage. In the sea anemone, the opening or blastopore becomes the opening to the gastrovascular cavity. In most animals a third germ layer develops after the gastrula stage called the mesoderm.

Body Cavities In some animals, the mesoderm lies along the outer edge of the ectoderm, but not along the endoderm. These types of organisms are referred to as pseudocoelomate, meaning “false coelom”. In other animals, mesoderm completely fills the internal body cavity. This type of body cavity is without a coelom. These organisms are referred to as acoelomate.

Body Cavities

Body Cavities And lastly the body cavity of most animals are eucoelomate or “true coelomate”. Usually the cavity is just referred to as simply a coelomate body cavity. In this body plan, the mesoderm completely lines the endoderm and ectoderm. A true coelom or body cavity allows much more flexibility and space for internal organs. Larger and more complex organisms have a coelomate body cavity.

Body Cavities

Development of animals and their body cavities In coelomate animals if the coelom forms from mesoderm spreading out in the blastopore region, this pattern of coelom development is called schizocoelous development. In coelomate animals if the coelom forms from pouches that pinch off from a region of the endoderm and enlarge to form the coelom, this pattern of coelom development is called enterocoelous development.

Animal Development

Animal Development Another main difference in the way animals develop is the development of the blastopore, or the opening that forms the mouth or anus. In protostomes, which means “mouth first”, the blastopore develops into the mouth. (found in annelids, mulluscs, and arthropods). In deuterostomes, which means “mouth second”, the blastopore develops into the anus. (found in echinoderms and chordates).

Protostomes vs. Deuterostomes

The Development of Tissues Eventually the germ layers (ectoderm, endoderm, and mesoderm) begin to specialize to form tissues. All of the body tissues of animals are comprised of one of the four basic tissue types. Epithelial tissue Connective tissue Muscular tissue Nervous tissue

Body Tissues