Describing Combinational Logic Using Processes

Slides:



Advertisements
Similar presentations
1 Lecture 13 VHDL 3/16/09. 2 VHDL VHDL is a hardware description language. The behavior of a digital system can be described (specified) by writing a.
Advertisements

Quad 2-to-1 and Quad 4-to-1 Multiplexers Discussion D2.4 Example 7.
Arbitrary Waveform Discussion 5.5 Example 34.
1 VLSI DESIGN USING VHDL Part II A workshop by Dr. Junaid Ahmed Zubairi.
2-to-1 Multiplexer: if Statement Discussion D2.1 Example 4.
Decoders and Encoders Lecture L4.2. Decoders and Encoders Binary Decoders Binary Encoders Priority Encoders.
Introduction to VHDL VHDL Tutorial R. E. Haskell and D. M. Hanna T1: Combinational Logic Circuits.
Introduction to VHDL Multiplexers. Introduction to VHDL VHDL is an acronym for VHSIC (Very High Speed Integrated Circuit) Hardware Description Language.
4-to-1 Multiplexer: case Statement Discussion D2.3 Example 6.
Digilent Spartan 3 Board Discussion D3.3
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
George Mason University ECE 448 – FPGA and ASIC Design with VHDL Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448.
Simple Testbenches Behavioral Modeling of Combinational Logic
ECE 331 – Digital System Design
Data Flow Modeling of Combinational Logic Simple Testbenches
A.7 Concurrent Assignment Statements Used to assign a value to a signal in an architecture body. Four types of concurrent assignment statements –Simple.
CprE / ComS 583 Reconfigurable Computing Prof. Joseph Zambreno Department of Electrical and Computer Engineering Iowa State University Lecture #17 – Introduction.
ENG241 Digital Design Week #4 Combinational Logic Design.
VHDL for Combinational Circuits. VHDL We Know Simple assignment statements –f
ECE 331 – Digital System Design Multiplexers and Demultiplexers (Lecture #13)
2’s Complement 4-Bit Saturator Discussion D2.8 Lab 2.
IAY 0600 Digital Systems Design VHDL discussion Dataflow Style Combinational Design Alexander Sudnitson Tallinn University of Technology.
George Mason University Data Flow Modeling in VHDL ECE 545 Lecture 7.
2/10/07DSD,USIT,GGSIPU1 BCD adder KB3B2B1B0CD3D2D1D
9/9/2006DSD,USIT,GGSIPU1 Concurrent vs Sequential Combinational vs Sequential logic –Combinational logic is that in which the output of the circuit depends.
CS/EE 3700 : Fundamentals of Digital System Design
CEC 220 Digital Circuit Design VHDL in Sequential Logic Wednesday, March 25 CEC 220 Digital Circuit Design Slide 1 of 13.
Data Flow Modeling in VHDL
George Mason University ECE 448 – FPGA and ASIC Design with VHDL VHDL Coding for Synthesis ECE 448 Lecture 12.
George Mason University Behavioral Modeling of Sequential-Circuit Building Blocks ECE 545 Lecture 8.
CDA 4253 FPGA System Design Behavioral modeling of Combinational Circuits Hao Zheng Dept of Comp Sci & Eng USF.
George Mason University Data Flow Modeling of Combinational Logic ECE 545 Lecture 5.
Data Flow and Behavioral Modeling in VHDL 1 MS EMBEDDED SYSTEMS.
Algorithmic State Machine (ASM) Charts: VHDL Code & Timing Diagrams
Combinational logic circuit
Figure 7.1 Control of an alarm system
ENG2410 Digital Design “Combinational Logic Design”
Part II A workshop by Dr. Junaid Ahmed Zubairi
Dataflow Style Combinational Design with VHDL
Combinational Circuits Using VHDL
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
IAS 0600 Digital Systems Design
Sequential-Circuit Building Blocks
Algorithmic State Machine (ASM) Charts: VHDL Code & Timing Diagrams
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
Data Flow Modeling of Combinational Logic
VHDL (VHSIC Hardware Description Language)
VHDL Structural Architecture
ECE 545 Lecture 6 Behavioral Modeling of Sequential-Circuit Building Blocks Mixing Design Styles Modeling of Circuits with a Regular Structure.
Concurrent vs Sequential
Behavioral Modeling of Sequential-Circuit Building Blocks
Sequntial-Circuit Building Blocks
ECE 448 Lecture 3 Combinational-Circuit Building Blocks Data Flow Modeling of Combinational Logic ECE 448 – FPGA and ASIC Design with VHDL.
ECE 331 – Digital System Design
Data Flow Description of Combinational-Circuit Building Blocks
Modeling of Circuits with a Regular Structure
Data Flow Description of Combinational-Circuit Building Blocks
ECE 545 Lecture 9 Behavioral Modeling of Sequential-Circuit Building Blocks Mixing Design Styles Modeling of Circuits with a Regular Structure.
ECE 448 Lecture 4 Modeling of Circuits with a Regular Structure Constants, Aliases, Packages ECE 448 – FPGA and ASIC Design with VHDL.
Modeling of Circuits with a Regular Structure
Single bit comparator Single bit comparator 4/10/2007 DSD,USIT,GGSIPU
Modeling of Circuits with Regular Structure
CprE / ComS 583 Reconfigurable Computing
Sequntial-Circuit Building Blocks
4-Input Gates VHDL for Loops
디 지 털 시 스 템 설 계 UP2 Kit를 이용한 카운터 설계
Digital Logic with VHDL
(Sequential-Circuit Building Blocks)
Presentation transcript:

Describing Combinational Logic Using Processes ECE 545 Lecture 15 Describing Combinational Logic Using Processes ECE 545 – Introduction to VHDL

2-to-4 Decoder En w w y y y y 1 1 2 3 w En y 1 2 3 1 1 1 1 1 1 1 1 1 1 1 2 3 w En y 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 x x (a) Truth table (b) Graphical symbol ECE 545 – Introduction to VHDL

VHDL code for a 2-to-4 Decoder LIBRARY ieee ; USE ieee.std_logic_1164.all ; ENTITY dec2to4 IS PORT ( w : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ; En : IN STD_LOGIC ; y : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ) ; END dec2to4 ; ARCHITECTURE dataflow OF dec2to4 IS SIGNAL Enw : STD_LOGIC_VECTOR(2 DOWNTO 0) ; BEGIN Enw <= En & w ; WITH Enw SELECT y <= “0001" WHEN "100", "0010" WHEN "101", "0100" WHEN "110", “1000" WHEN "111", "0000" WHEN OTHERS ; END dataflow ; ECE 545 – Introduction to VHDL

Describing combinational logic using processes LIBRARY ieee ; USE ieee.std_logic_1164.all ; ENTITY dec2to4 IS PORT ( w : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ; En : IN STD_LOGIC ; y : OUT STD_LOGIC_VECTOR(0 TO 3) ) ; END dec2to4 ; ARCHITECTURE Behavior OF dec2to4 IS BEGIN PROCESS ( w, En ) IF En = '1' THEN CASE w IS WHEN "00" => y <= "1000" ; WHEN "01" => y <= "0100" ; WHEN "10" => y <= "0010" ; WHEN OTHERS => y <= "0001" ; END CASE ; ELSE y <= "0000" ; END IF ; END PROCESS ; END Behavior ; ECE 545 – Introduction to VHDL

Describing combinational logic using processes LIBRARY ieee ; USE ieee.std_logic_1164.all ; ENTITY seg7 IS PORT ( bcd : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ; leds : OUT STD_LOGIC_VECTOR(1 TO 7) ) ; END seg7 ; ARCHITECTURE Behavior OF seg7 IS BEGIN PROCESS ( bcd ) CASE bcd IS -- abcdefg WHEN "0000" => leds <= "1111110" ; WHEN "0001" => leds <= "0110000" ; WHEN "0010" => leds <= "1101101" ; WHEN "0011" => leds <= "1111001" ; WHEN "0100" => leds <= "0110011" ; WHEN "0101" => leds <= "1011011" ; WHEN "0110" => leds <= "1011111" ; WHEN "0111" => leds <= "1110000" ; WHEN "1000" => leds <= "1111111" ; WHEN "1001" => leds <= "1110011" ; WHEN OTHERS => leds <= "-------" ; END CASE ; END PROCESS ; END Behavior ; ECE 545 – Introduction to VHDL

Describing combinational logic using processes LIBRARY ieee ; USE ieee.std_logic_1164.all ; ENTITY compare1 IS PORT ( A, B : IN STD_LOGIC ; AeqB : OUT STD_LOGIC ) ; END compare1 ; ARCHITECTURE Behavior OF compare1 IS BEGIN PROCESS ( A, B ) AeqB <= '0' ; IF A = B THEN AeqB <= '1' ; END IF ; END PROCESS ; END Behavior ; ECE 545 – Introduction to VHDL

Incorrect code for combinational logic - Implied latch (1) LIBRARY ieee ; USE ieee.std_logic_1164.all ; ENTITY implied IS PORT ( A, B : IN STD_LOGIC ; AeqB : OUT STD_LOGIC ) ; END implied ; ARCHITECTURE Behavior OF implied IS BEGIN PROCESS ( A, B ) IF A = B THEN AeqB <= '1' ; END IF ; END PROCESS ; END Behavior ; ECE 545 – Introduction to VHDL

Incorrect code for combinational logic - Implied latch (2) AeqB ECE 545 – Introduction to VHDL

Describing combinational logic using processes Rules that need to be followed: All inputs to the combinational circuit should be included in the sensitivity list No other signals should be included None of the statements within the process should be sensitive to rising or falling edges All possible cases need to be covered in the internal IF and CASE statements in order to avoid implied latches ECE 545 – Introduction to VHDL

Covering all cases in the IF statement Using ELSE IF A = B THEN AeqB <= '1' ; ELSE AeqB <= '0' ; Using default values AeqB <= '0' ; IF A = B THEN AeqB <= '1' ; ECE 545 – Introduction to VHDL

Covering all cases in the CASE statement Using WHEN OTHERS CASE y IS WHEN S1 => Z <= "10"; WHEN S2 => Z <= "01"; WHEN S3 => Z <= "00"; WHEN OTHERS => Z <= „--"; END CASE; CASE y IS WHEN S1 => Z <= "10"; WHEN S2 => Z <= "01"; WHEN OTHERS => Z <= "00"; END CASE; Using default values Z <= "00"; CASE y IS WHEN S1 => Z <= "10"; WHEN S2 => Z <= "10"; END CASE; ECE 545 – Introduction to VHDL

RTL Hardware Design by P. Chu Chapter 10

RTL Hardware Design by P. Chu Chapter 10

RTL Hardware Design by P. Chu Chapter 10

RTL Hardware Design by P. Chu Chapter 10

RTL Hardware Design by P. Chu Chapter 10

RTL Hardware Design by P. Chu Chapter 10

RTL Hardware Design by P. Chu Chapter 10

RTL Hardware Design by P. Chu Chapter 10