Boyce/DiPrima 10th ed, Ch 10.3: The Fourier Convergence Theorem Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.

Slides:



Advertisements
Similar presentations
Boyce/DiPrima 9th ed, Ch 2.4: Differences Between Linear and Nonlinear Equations Elementary Differential Equations and Boundary Value Problems, 9th edition,
Advertisements

Boyce/DiPrima 9th ed, Ch 2.8: The Existence and Uniqueness Theorem Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
1.Introducción 2.Casos simples de reducción del orden 3.Ecuaciones lineales homogéneas con coeficientes constantes 4.Ecuaciones lineales no homogéneas.
Boyce/DiPrima 9th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9th ed, Ch 3.5: Nonhomogeneous Equations;Method of Undetermined Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 10.1: Two-Point Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Ch 6.1: Definition of Laplace Transform Many practical engineering problems involve mechanical or electrical systems acted upon by discontinuous or impulsive.
Ch 5.1: Review of Power Series Finding the general solution of a linear differential equation depends on determining a fundamental set of solutions of.
Boyce/DiPrima 9th ed, Ch 11.2: Sturm-Liouville Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 10th ed, Ch 10.2: Fourier Series Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and Richard.
Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition,
Boyce/DiPrima 9 th ed, Ch 3.1: 2 nd Order Linear Homogeneous Equations-Constant Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 10.5: Separation of Variables; Heat Conduction in a Rod Elementary Differential Equations and Boundary Value Problems, 10th.
Boyce/DiPrima 9th ed, Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 3.4: Repeated Roots; Reduction of Order Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
Boyce/DiPrima 9 th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9th ed, Ch 8.4: Multistep Methods Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce and Richard.
Chapter 8-Infinite Series Calculus, 2ed, by Blank & Krantz, Copyright 2011 by John Wiley & Sons, Inc, All Rights Reserved.
Boyce/DiPrima 9 th ed, Ch 5.1: Review of Power Series Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce.
Boyce/DiPrima 9th ed, Ch 4.2: Homogeneous Equations with Constant Coefficients Elementary Differential Equations and Boundary Value Problems, 9th edition,
Boyce/DiPrima 9 th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Integral Transform Method CHAPTER 15. Ch15_2 Contents  15.1 Error Function 15.1 Error Function  15.2Applications of the Laplace Transform 15.2Applications.
Boyce/DiPrima 9 th ed, Ch 10.8: Laplace’s Equation Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 3.2: Fundamental Solutions of Linear Homogeneous Equations Elementary Differential Equations and Boundary Value Problems, 9 th.
Boyce/DiPrima 9th ed, Ch 1.2: Solutions of Some Differential Equations Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9th ed, Ch 4.1: Higher Order Linear ODEs: General Theory Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
12.2 Fourier Series Trigonometric Series is orthogonal on the interval [ -p, p]. In applications, we are interested to expand a function f(x) defined on.
Differential Equations Brannan Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved. Chapter 09: Partial Differential Equations and Fourier.
Boyce/DiPrima 9 th ed, Ch 6.2: Solution of Initial Value Problems Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 5 Integration.
Boyce/DiPrima 9th ed, Ch 3.3: Complex Roots of Characteristic Equation Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9 th ed, Ch 2.2: Separable Equations Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 11.3: Non- Homogeneous Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch1.3: Classification of Differential Equations Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch 6.1: Definition of Laplace Transform Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
MAT 1228 Series and Differential Equations Section 4.1 Definition of the Laplace Transform
Boyce/DiPrima 9 th ed, Ch 5.3: Series Solutions Near an Ordinary Point, Part II Elementary Differential Equations and Boundary Value Problems, 9 th edition,
Boyce/DiPrima 9 th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and Richard.
Boyce/DiPrima 9 th ed, Ch 2.6: Exact Equations & Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Math for CS Fourier Transform
Ch 10.2: Fourier Series We will see that many important problems involving partial differential equations can be solved, provided a given function can.
Boyce/DiPrima 10th ed, Ch 7.9: Nonhomogeneous Linear Systems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E.
Boyce/DiPrima 10th ed, Ch 10.4: Even and Odd Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
Boyce/DiPrima 10th ed, Ch 7.2: Review of Matrices Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 10th ed, Ch 6.2: Solution of Initial Value Problems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 10.8: Laplace’s Equation Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Ch 10.4: Even and Odd Functions
Boyce/DiPrima 9th ed, Ch 10.8 Appendix A: Derivation of the Heat Conduction Equation Elementary Differential Equations and Boundary Value Problems, 9th.
Boyce/DiPrima 10th ed, Ch 6.6: The Convolution Integral Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E.
Boyce/DiPrima 10th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 9th ed, Ch 9.6: Liapunov’s Second Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce.
Boyce/DiPrima 9th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 10th ed, Ch 7.4: Basic Theory of Systems of First Order Linear Equations Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 6.1: Definition of Laplace Transform Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Chapter 7 Integration.
Boyce/DiPrima 10th ed, Ch 7.7: Fundamental Matrices Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 10th ed, Ch 7.8: Repeated Eigenvalues Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
Boyce/DiPrima 10th ed, Ch 6.5: Impulse Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
Boyce/DiPrima 10th ed, Ch 7.5: Homogeneous Linear Systems with Constant Coefficients Elementary Differential Equations and Boundary Value Problems, 10th.
Boyce/DiPrima 10th ed, Ch 6.4: Differential Equations with Discontinuous Forcing Functions Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 4.3: Nonhomogeneous Equations: Method of Undetermined Coefficients Elementary Differential Equations and Boundary Value Problems,
182A – Engineering Mathematics
Boyce/DiPrima 10th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 3.6: Variation of Parameters Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce.
Ch 6.1: Definition of Laplace Transform
Introduction to Fourier Series
Boyce/DiPrima 10th ed, Ch 7.6: Complex Eigenvalues Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 9th ed, Ch 5.3: Series Solutions Near an Ordinary Point, Part II Elementary Differential Equations and Boundary Value Problems, 9th edition,
Presentation transcript:

Boyce/DiPrima 10th ed, Ch 10.3: The Fourier Convergence Theorem Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and Richard C. DiPrima, ©2013 by John Wiley & Sons, Inc. In Section 10.2 we show that if a Fourier series converges and thereby defines a function f, then f is periodic with period 2L, with the coefficients am and bm given by In this section we begin with a periodic function f of period 2L that is integrable on [-L, L]. We compute am and bm using the formulas above and construct the associated Fourier series. The question is whether this series converges for each x, and if so, whether its sum is f(x).

Fourier Series Representation of Functions To guarantee convergence of a Fourier series to the function from which its coefficients were computed, it is essential to place additional conditions on the function. From a practical point of view, such conditions should be broad enough to cover all situations of interest, yet simple enough to be easily checked for particular functions. To this end, we recall from Chapter 6.1 the definition of a piecewise continuous function on the next slide.

Piecewise Continuous Functions A function f is piecewise continuous on an interval [a, b] if this interval can be partitioned by a finite number of points a = x0 < x1 < … < xn = b such that (1) f is continuous on each (xk, xk+1) The notation f(c+) denotes the limit of f(x) as x c from the right, and f(c-) denotes the limit of f(x) as x c from the left. It is not essential that the function be defined at the partition points xk,, nor is it essential that the interval [a, b] be closed.

Theorem 10.3.1 Suppose that f and f ' are piecewise continuous on [-L, L). Further, suppose that f is defined outside [-L, L) so that it is periodic with period 2L. Then f has a Fourier series. where The Fourier series converges to f(x) at all points x where f is continuous, and to [f (x+) + f (x-)]/2 at all points x where f is discontinuous.