Chapter 2 MOS Transistors.

Slides:



Advertisements
Similar presentations
Lecture Metal-Oxide-Semiconductor (MOS) Field-Effect Transistors (FET) MOSFET Introduction 1.
Advertisements

MICROWAVE FET Microwave FET : operates in the microwave frequencies
EE466: VLSI Design Lecture 02 Non Ideal Effects in MOSFETs.
EE415 VLSI Design The Devices: MOS Transistor [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Outline Introduction – “Is there a limit?”
CSCE 612: VLSI System Design Instructor: Jason D. Bakos.
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Introduction to CMOS VLSI Design Nonideal Transistors.
Modern VLSI Design 3e: Chapter 2 Copyright  1998, 2002 Prentice Hall PTR Topics n Derivation of transistor characteristics.
EE130/230A Discussion 11 Peng Zheng.
MOS Capacitors MOS capacitors are the basic building blocks of CMOS transistors MOS capacitors distill the basic physics of MOS transistors MOS capacitors.
EE213 VLSI Design S Daniels Channel Current = Rate of Flow of Charge I ds = Q/τ sd Derive transit time τ sd τ sd = channel length (L) / carrier velocity.
Modern VLSI Design 4e: Chapter 2 Copyright  2009 Prentice Hall PTR Topics n Derivation of transistor characteristics.
Introduction to FinFet
Modern VLSI Design 3e: Chapter 2 Copyright  1998, 2002 Prentice Hall PTR Topics n Derivation of transistor characteristics.
EXAMPLE 6.1 OBJECTIVE Fp = 0.288 V
Chapter 4 Field-Effect Transistors
CSCE 613: Fundamentals of VLSI Chip Design Instructor: Jason D. Bakos.
ECE340 ELECTRONICS I MOSFET TRANSISTORS AND AMPLIFIERS.
Junction Capacitances The n + regions forms a number of planar pn-junctions with the surrounding p-type substrate numbered 1-5 on the diagram. Planar junctions.
Chapter 2 MOS Transistors. 2.2 STRUCTURE AND OPERATION OF THE MOS TRANSISTOR.
Digital Integrated Circuits© Prentice Hall 1995 Devices Jan M. Rabaey The Devices.
UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY
HO #3: ELEN Review MOS TransistorsPage 1S. Saha Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended.
1ECE 584, Summer 2002Brad Noble Chapter 3 Slides Cross Sectional View of FET.
Short-channel Effects in MOS transistors
MOSFET Current Voltage Characteristics Consider the cross-sectional view of an n-channel MOSFET operating in linear mode (picture below) We assume the.
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 2.
Metal-oxide-semiconductor field-effect transistors (MOSFETs) allow high density and low power dissipation. To reduce system cost and increase portability,
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 2, slide 1 Introduction to Electronic Circuit Design.
Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.
MOS Transistor Theory The MOS transistor is a majority carrier device having the current in the conducting channel being controlled by the voltage applied.
MOS Capacitor Lecture #5. Transistor Voltage controlled switch or amplifier : control the output by the input to achieve switch or amplifier Two types.
Analog Integrated Circuits Lecture 1: Introduction and MOS Physics ELC 601 – Fall 2013 Dr. Ahmed Nader Dr. Mohamed M. Aboudina
Microelectronic Circuit Design McGraw-Hill Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock.
EE314 IBM/Motorola Power PC620 IBM Power PC 601 Motorola MC68020 Field Effect Transistors.
UNIT II : BASIC ELECTRICAL PROPERTIES
Chapter 6 The Field Effect Transistor
Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 3 Fabrication, Layout, and Simulation.
Recall Last Lecture Common collector Voltage gain and Current gain
Revision CHAPTER 6.
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
積體電路元件與製程 半導體物理 半導體元件 PN junction CMOS 製程 MOS 元件.
Long Channel MOSFETs.
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
MOSFET CAPACITANCES Very Large Scale Integration 1 - VLSI 1
EE141 Chapter 3 VLSI Design The Devices March 28, 2003.
Lecture 16 ANNOUNCEMENTS OUTLINE MOS capacitor (cont’d)
Lecture 13: Part I: MOS Small-Signal Models
Reading: Finish Chapter 17,
Digital Integrated Circuits 11: MOS Transistor Design and Modeling
Qualitative Discussion of MOS Transistors
MOSFETs - An Introduction
Last Lecture – MOS Transistor Review (Chap. #3)
Semiconductor devices and physics
Channel Length Modulation
CHAPTER 8.
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
EXAMPLE 7.1 BJECTIVE Determine the total bias current on an IC due to subthreshold current. Assume there are 107 n-channel transistors on a single chip,
Lecture #15 OUTLINE Diode analysis and applications continued
Lecture 20 OUTLINE The MOSFET (cont’d)
Lecture 20 OUTLINE The MOSFET (cont’d)
Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved.
Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved.
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved.
Dr. Hari Kishore Kakarla ECE
Chapter 4 Field-Effect Transistors
Chapter 4 Field-Effect Transistors
Presentation transcript:

Chapter 2 MOS Transistors

2.2 Structure and operation of the MOS Transistor

2.2 Structure and Operation of the MOS Transistor

2.2 Structure and Operation of the MOS Transistor

2.2 Structure and Operation of the MOS Transistor

2.3 Threshold voltage of the MOS Transistor

2.3 Threshold Voltage of the MOS Transistor

2.3 Threshold Voltage of the MOS Transistor Intrinsic carrier concentration : Mass action law : Difference between intrinsic and actual Fermi level : p-type material case : Gate oxide capacitance : (2.1) (2.2) (2.3a) (2.3b) (2.4) (2.5)

2.3 Threshold Voltage of the MOS Transistor

2.3 Threshold Voltage of the MOS Transistor

2.3 Threshold Voltage of the MOS Transistor

2.3 MOS Structure 2.3.4 The Depletion Approximation

2.3 MOS Structure 2.3.4 The Depletion Approximation 2.47 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.80 2.81 2.82 2.83

2.3 MOS Structure 2.3.4 The Depletion Approximation

2.3 MOS Structure 2.3.4 The Depletion Approximation 2.84 2.85 2.86 2.87 2.88 2.89 2.90

2.3 MOS Structure 2.3.4 The Depletion Approximation 2.91 2.92 2.93 2.94

Change of Quasi-Fermi Potentials across the Space-Charge Region        

Modern VLSI Devices

Modern VLSI Devices

Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved.

2.3 Threshold Voltage of the MOS Transistor Silicon-gate device work function difference : Flat-band condition : Depletion layer(p-type) thickness : Bulk charge : (Inversion) (Body bias) (2.6) (2.7) (2.8) (2.9a) (2.9b)

2.3 Threshold Voltage of the MOS Transistor

(2.10) (2.11) (2.12) 2.3 Threshold Voltage of the MOS Transistor Body-effect coefficient(body factor)Flat-band condition : (2.10) (2.11) (2.12)

2.4 Effect of Gate-Body Voltage on Surface Condition 2.4.26

2.3 Threshold Voltage of the MOS Transistor

2.4 First-Order current-voltage characteristics

2.4 First-Order Current-Voltage Characteristics

(2.13) (2.14) (2.15) 2.4 First-Order Current-Voltage Characteristics Charge area density at the point y : Drain-source current : (Carrier velocity : ) (2.13) (2.14) (2.15)

(2.16) (2.17a) (2.17b) 2.4 First-Order Current-Voltage Characteristics Process transconductance parameter : Drain-source current : (Device transconductance parameter : ) (2.16) (2.17a) (2.17b)

2.4 First-Order Current-Voltage Characteristics

(2.18) (2.19) (2.20) 2.4 First-Order Current-Voltage Characteristics Saturation voltage : Drain-source current (saturation) : (Shortening the electrically effective value of L) (2.18) (2.19) (2.20)

2.4 First-Order Current-Voltage Characteristics

Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved.

2.5 Derivation of Velocity-Saturated current equation

2.5.1 Effect of High Fields

2.5.1 Effect of High Fields (2.21)

2.5.1 Effect of High Fields

(2.22) (2.23a) (2.23b) (2.24) 2.5.1 Effect of High Fields Critical field values : Carrier velocity : Consider boundary condition : (2.22) (2.23a) (2.23b) (2.24)

(2.25) 2.5.2 Current Equations for Velocity-Saturated Devices Linear region operation (2.25)

2.5.2 Current Equations for Velocity-Saturated Devices Saturation region operation Limiting cases : ( ) ( ) (2.26) (2.27) (2.28) (2.29)

2.5.2 Current Equations for Velocity-Saturated Devices

5.2 Carrier Velocity Saturation 5.2.16 5.2.17

Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved.

2.5.2 Current Equations for Velocity-Saturated Devices 1X devices

2.5.2 Current Equations for Velocity-Saturated Devices Equations for deep submicron devices Saturation region Channel length modulation Linear region

2.6 Alpha-power law model

2.6 Alpha-Power Law Model

2.6 Alpha-Power Law Model (2.30a) (2.30b) (2.31)

2.7 Subthreshold conduction

2.7 Subthreshold Conduction

2.5.1 Effect of High Fields

(2.32) (2.33) 2.7 Subthreshold Conduction Current equation: Slope factor : (2.32) (2.33)

Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved.

Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved.

Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved.

Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved.

2.8 Capacitances of the MOS Transistor

2.8 Capacitances of the MOS Transistor

(2.34) 2.8.1 Thin-Oxide Capacitance Total capacitance of the thin-oxide : Examples : i) technology, oxide thickness ii) process, with (2.34)

2.8.1 Thin-Oxide Capacitance

7.3 A Medium-Frequency Small-Signal Model for the Intrinsic part

7.3 A Medium-Frequency Small-Signal Model for the Intrinsic Part 7.3.1 7.3.2

7.3 A Medium-Frequency Small-Signal Model for the Intrinsic Part 7.3.3 7.3.4 7.3.5

7.3 A Medium-Frequency Small-Signal Model for the Intrinsic Part

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.1 Complete Description of Intrinsic Capacitance Effects 8.2.3 8.2.4 8.2.5 8.2.6 8.2.7 8.2.8

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.1 Complete Description of Intrinsic Capacitance Effects 8.2.9 8.2.10 8.2.11 8.2.12

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.2 Small-Signal Equivalent Circuit Topologies

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.2 Small-Signal Equivalent Circuit Topologies 8.2.17 8.2.18 8.2.19a 8.2.19b 8.2.19c 8.2.20

8. 2 A Complete Quasi-Static Model for the Intrinsic Part. 8. 2 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.2 Small-Signal Equivalent Circuit Topologies

7.3 A Medium-Frequency Small-Signal Model for the Intrinsic Part 7.3.6

7.3 A Medium-Frequency Small-Signal Model for the Intrinsic Part 7.3.7 7.3.8 7.3.9 7.3.10

7.3 A Medium-Frequency Small-Signal Model for the Intrinsic Part 7.3.11 7.3.12 7.3.13 7.3.14 7.3.15 7.3.16 7.3.17 7.3.18

7.3 A Medium-Frequency Small-Signal Model for the Intrinsic Part 7.3.19 7.3.20

7.3 A Medium-Frequency Small-Signal Model for the Intrinsic Part Nonsaturation with VDS = 0 (h=1) Saturation (h=0) 7.3.21 7.3.22 7.3.25 7.3.26 7.3.27 7.3.28 7.3.29 7.3.23, 24

7.3 A Medium-Frequency Small-Signal Model for the Intrinsic Part

7.3 A Medium-Frequency Small-Signal Model for the Intrinsic Part Click Intrinsic+Extrinsic (7.4)

2.8.1 Thin-Oxide Capacitance

(2.35) (2.36) (2.37) 2.8.2 pn Junction Capacitance Current-voltage characteristic : Built-in junction potential : (2.35) (2.36) (2.37)

2.8.2 pn Junction Capacitance

(2.38) (2.39) (2.40) 2.8.2 pn Junction Capacitance Zero-bias junction capacitance : For of the NMOS device : (2.38) (2.39) (2.40)

2.8.2 pn Junction Capacitance

(2.41) (2.42) 2.8.2 pn Junction Capacitance Total junction capacitance : Simplification : ( , ) (2.41) (2.42)

2.8.2 pn Junction Capacitance Equivalent voltage-independent capacitance

2.8.2 pn Junction Capacitance (2.43) (2.44) (2.45)

2.8.3 Overlap Capacitance

2.8.3 Overlap Capacitance (2.46) (2.47)

2.9 summary

2.9 Summary

2.9 Summary

2.9 Summary

2.9 Summary

2.9 Summary

2.9 Summary

2.9 Summary