Determination of the Structures of Cyclopentanone and of the Argon Cyclopentanone van der Waals Complex Andrew H. Brooks, Wei Lin, Wallace C. Pringle and.

Slides:



Advertisements
Similar presentations
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Advertisements

CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
Spectra, Structures, and Dynamics of Weakly Bound Clusters from Dimers to Nonamers Wolfgang Jäger Department of Chemistry, University of Alberta.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College.
Microwave spectroscopy of the heavy-atom carbene analog HSiI and DSiI Lu Kang Southern Polytechnic State University Marietta, GA Mohammed A. Gharaibeh.
THE MICROWAVE SPECTRA OF THE LINEAR OC HCCCN, OC DCCCN, AND THE T-SHAPED HCCCN CO 2 COMPLEXES The 62 nd. International Symposium on Molecular Spectroscopy,
Infrared spectra of OCS-C 6 H 6, OCS-C 6 H 6 -He and OCS-C 6 H 6 -Ne van der Waals Complexes M. Dehghany, J. Norooz Oliaee, Mahin Afshari, N. Moazzen-Ahmadi.
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
Real vs. Ideal Gas Under what types of pressure do gases behave ideally? Under what type of temperatures do gases behave ideally? We originally defined.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Real gas 1.molecules not always in motion (condense phase can be formed) 2.molecular size is non-negligible (there is molecular repulsion) 3.Molecules.
The inversion motion in the Ne – NH 3 van der Waals dimer studied via microwave spectroscopy Laura E. Downie, Julie M. Michaud and Wolfgang Jäger Department.
INFRARED-ACTIVE VIBRON BANDS ASSOCIATED WITH RARE GAS SUBSTITUTIONAL IMPURITIES IN SOLID HYDROGEN PAUL L. RASTON and DAVID T. ANDERSON, Department of Chemistry,
PURE ROTATIONAL SPECTRA OF THE REACTION PRODUCTS OF LASER ABLATED THORIUM METAL AND OXYGEN MOLECULES ENTRAINED WITHIN SUPERSONIC EXPANSIONS OF NOBLE GASES.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
HYPERFINE SPLITTING AND ROTATIONAL ANALYSIS OF THE DIATOMIC MOLECULE ZINC MONOSULFIDE, ZnS DANIEL J. FROHMAN, G. S. GRUBBS II AND STEWART E. NOVICK O.S.U.
1 Fourier transform microwave and infrared study of silacyclobutane Cody van Dijk, Samantha van Nest, Ziqiu Chen and Jennifer van Wijngaarden Department.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
Joseph A. Fournier, Robert K. Bohn, John A. Montgomery, Jr. University of Connecticut, Storrs, CT Microwave Spectroscopy and Structures of Perfluorohexane.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
Fundamentals and Torsional Combination Bands of Two Isomers of the OCS-CO 2 Complex J. Norooz Oliaee, M. Dehghany, F. Mivehvar, Mahin Afshari, N. Moazzen-Ahmadi.
The Rotational Spectra of Cyclohexene Oxide and Its Argon van der Waals Complex DANIEL J. FROHMAN, STEWART E. NOVICK AND WALLACE C. PRINGLE Wesleyan University.
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
OSU-05 TA 101 The Structure of Ethynylferrocene using Microwave Spectroscopy. Ranga Subramanian, Chandana Karunatilaka, Kristen Keck and Stephen Kukolich.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Fourier Transform Emission Spectroscopy of Some New Bands of ReN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ and P. F. Bernath.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
Determination of the Structure of Cyclopentanone and Argon and Neon Cyclopentanone van der Waals Complexes 40 Ar 36 Ar 20 Ne 22 Ne 18 O 99.6% 0.33% 90.5%
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
CHEMISTRY 2500 Topic #4: Conformations of Organic Molecules Fall 2014 Dr. Susan Findlay.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Determination of the Structure of Neon Cyclopentanone Wei Lin, Andrea J. Minei, Andrew H. Brooks, Wallace C. Pringle, Stewart E. Novick Department of Chemistry.
Microwave Spectra of cis-1,3,5- Hexatriene and Its 13 C Isotopomers; An r s Substitution Structure for the Carbon Backbone Richard D. Suenram, Brooks H.
INVESTIGATION OF VAN DER WAALS COMPLEXES IN A FREE EXPANSION OF C 2 H 2 /X (X=RARE GAS) (X=Rg) USING CW CAVITY RING-DOWN SPECTROSCOPY IN THE OVERTONE RANGE.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
Digital Control System for Microwave Spectroscopy Data Collection Amanda Olmut Dr. Stephen Kukolich, Principle Investigator Dr. Adam Daly, Project Lead.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Analysis of bands of the 405 nm electronic transition of C3Ar
Substitution Structures of Large Molecules and Medium Range Correlations in Quantum Chemistry Calculations Luca Evangelisti Dipartmento di Chimica “Giacomo.
Department of Chemistry *Department of Chemistry, Mt. Holyoke College,
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
Department of Chemistry
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
STEPHEN G. KUKOLICH, MING SUN, ADAM M. DALY University of Arizona
1Kanagawa Institute of Technology 3Georgia Southern University
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
Chirped pulse rotational spectroscopy
Contrasting complexes of hydrogen and hydrogen fluoride by high resolution spectroscopy.
Department of Chemistry
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
Methylstyrenes – Microwave Spectroscopy
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
Terahertz VRT Spectroscopy of the Water Tetramer-d8: Combined Analysis of Vibrational Bands at 4.1 THz and 2.0 THz Wei Lin, Jia-xiang Han, Lynelle K.
Chapter 8 Real Gases.
ASSIGNMENT OF THE PERFLUOROPROPIONIC ACID-FORMIC ACID COMPLEX AND THE DIFFICULTIES OF INCLUDING HIGH Ka TRANSITIONS Daniel A. Obenchain, Eric A. Arsenault,
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

Determination of the Structures of Cyclopentanone and of the Argon Cyclopentanone van der Waals Complex Andrew H. Brooks, Wei Lin, Wallace C. Pringle and Stewart E. Novick Department of Chemistry, Wesleyan University, Middletown, CT 06459

Positions of Argon in Ar Four-membered Ring Complexes studied in this lab

Argon Methylene Cyclobutane (RC08) Ar: a = 0.11Ǻ b = 0.51Ǻ c = 3.62Ǻ (on the PAS of Methylene Cyclobutane)

Experimental conditions Fourier Transform Microwave spectrometer 0.5% Cyclopentanone in Ar 0.3 atm backing pressure 13C and 18O isotopomers were measured in natural abundance

Four-membered vs Five-membered rings Ring strain is much less for a five-membered ring than for a four- membered ring, giving rise to a nonplanar molecule ADD PICTURES W/ANGLES!

Cyclopentanone Bent Twisted

Spectroscopic Constants for Cyclopentanone

Cartesian Coordinates of Cyclopentanone

Cyclopentanone All 12C isotopomer and three 13C isotopomers, improved spectroscopic constants New 18O isotopomer, complete heavy-atom substitution structure Accurate starting structure for Ar cyclopentanone investigation

Ar Cyclopentanone

LAS program Programmed by Aaron J. Schoeffler (from Art Maki’s ASY7) Takes a set of observed but unassigned rotational lines and determines assignments using any combination of lines and a range of rotational constant values set by an initial prediction and a tolerance parameter. First success of LAS program!

Spectroscopic Constants for Argon Cyclopentanone

(on the PAS of cyclopentanone) Where is Argon? Ar: a = 0.95Ǻ b = 0.80Ǻ c = 3.46Ǻ (on the PAS of cyclopentanone) Five 13C isotopomers at 1% abundance, one 18O at 0.2% abundance

Positions of Argon in Ar Four-membered Ring Complexes studied in this lab

What’s Next Ne Cyclopentanone van der Waals Complex (RH09) Ar Cyclopentene van der Waals Complex Larger rings? Ar Tropolone van der Waals Complex (RH10)

Summary Complete substitution structures from FTMW spectra of all 12C and 13C, 18O singly substituted cyclopentanone and argon cyclopentanone