Department of Chemistry *Department of Chemistry, Mt. Holyoke College,

Slides:



Advertisements
Similar presentations
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Advertisements

Production of Molecular Ions Using a Hollow-Cathode Spectrometer Trevor Cross, Nadine Wehres, Mary Radhuber, Anne Carroll, Susanna Widicus Weaver Department.
Spectra, Structures, and Dynamics of Weakly Bound Clusters from Dimers to Nonamers Wolfgang Jäger Department of Chemistry, University of Alberta.
THE MICROWAVE SPECTRA OF THE LINEAR OC HCCCN, OC DCCCN, AND THE T-SHAPED HCCCN CO 2 COMPLEXES The 62 nd. International Symposium on Molecular Spectroscopy,
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Chirped-Pulse Broadband Microwave Spectra and Structures of the OCS Trimer and Tetramer Luca Evangelisti, Cristobal Perez, Nathan A. Seifert, Brooks H.
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
The inversion motion in the Ne – NH 3 van der Waals dimer studied via microwave spectroscopy Laura E. Downie, Julie M. Michaud and Wolfgang Jäger Department.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
Fundamentals and Torsional Combination Bands of Two Isomers of the OCS-CO 2 Complex J. Norooz Oliaee, M. Dehghany, F. Mivehvar, Mahin Afshari, N. Moazzen-Ahmadi.
The Rotational Spectra of Cyclohexene Oxide and Its Argon van der Waals Complex DANIEL J. FROHMAN, STEWART E. NOVICK AND WALLACE C. PRINGLE Wesleyan University.
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
RANIL M. GURUSINGHE, MICHAEL TUBERGEN Department of Chemistry and Biochemistry, Kent State University, Kent, OH. RANIL M. GURUSINGHE, MICHAEL TUBERGEN.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
A LABORATORY AND THEORETICAL INVESTIGATION OF THE SILICON SULFUR MOLECULES H 2 SiS AND Si 2 S. MICHAEL C. MCCARTHY 1, PATRICK THADDEUS 1, HARSHAL GUPTA.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
OSU-05 TA 101 The Structure of Ethynylferrocene using Microwave Spectroscopy. Ranga Subramanian, Chandana Karunatilaka, Kristen Keck and Stephen Kukolich.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
N 2 -CO 2 Consequences for Global Warming? Daniel Frohman Wesleyan University TH01 June 22, 2010.
Determination of the Structure of Cyclopentanone and Argon and Neon Cyclopentanone van der Waals Complexes 40 Ar 36 Ar 20 Ne 22 Ne 18 O 99.6% 0.33% 90.5%
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Determination of the Structure of Neon Cyclopentanone Wei Lin, Andrea J. Minei, Andrew H. Brooks, Wallace C. Pringle, Stewart E. Novick Department of Chemistry.
The microwave spectrum of cyanophosphaacetylene, H 2 P−C≡C−C≡N Lu Kang Department of Natural Sciences, Union College, Barbourville, KY Andrea J.
Microwave and Ab Initio Investigations of CHCl 2 F-OCS and Related Hydrochlorofluorocarbon Complexes Rebecca A. Peebles and Amanda L. Steber Department.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Rotational Spectra and Structure of PhenylacetyleneH2S complex
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
72nd International Symposium on Molecular Spectroscopy, 6/20/2017
Juliane Heitkämper, John C Mullaney, Nick Walker
CO2 dimer: Five intermolecular vibrations observed via infrared combination bands Jalal Norooz Oliaee, Mehdi Dehghany, Mojtaba Rezaei, Nasser Moazzen-Ahmadi.
Determination of the Structures of Cyclopentanone and of the Argon Cyclopentanone van der Waals Complex Andrew H. Brooks, Wei Lin, Wallace C. Pringle and.
Department of Chemistry
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
1Kanagawa Institute of Technology 3Georgia Southern University
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
The CP-FTMW Spectrum of Verbenone
The CP-FTMW Spectrum of Bromoperfluoroacetone
Aimee Bell, Omar Mahassneh, James Singer,
Chirped pulse rotational spectroscopy
Contrasting complexes of hydrogen and hydrogen fluoride by high resolution spectroscopy.
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
Department of Chemistry
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
Microwave spectra of 1- and 2-bromobutane
Mahdi Kamaee and Jennifer van Wijngaarden
Methylstyrenes – Microwave Spectroscopy
Fourier transform microwave spectra of n-butanol and isobutanol
MICROWAVE SPECTRA FOR THE THREE 13C1 ISOTOPOLOGUES OF PROPENE AND NEW ROTATIONAL CONSTANTS FOR PROPENE AND ITS 13C1 ISOTOPOLOGUES NORMAN C. CRAIG, Department.
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
The rotational spectrum of the urea isocyanic acid complex
Analysis of torsional splitting in the ν8 band of propane near 870
ASSIGNMENT OF THE PERFLUOROPROPIONIC ACID-FORMIC ACID COMPLEX AND THE DIFFICULTIES OF INCLUDING HIGH Ka TRANSITIONS Daniel A. Obenchain, Eric A. Arsenault,
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

Department of Chemistry *Department of Chemistry, Mt. Holyoke College, Determination of the Structure of Cyclopenteneoxide and the Argon Cyclopenteneoxide van der Waals Complex Andrea J. Minei, Jennifer van Wijngaarden*, Wallace C. Pringle, and Stewart E. Novick Department of Chemistry Wesleyan University Middletown, CT 06459 *Department of Chemistry, Mt. Holyoke College, South Hadley, MA 01075

van der Waals Complexes vdW complex a* b* c* Argon Methylene Cyclobutane 0.11 0.51 +3.62 Argon Cyclobutanone1 0.23 0.55 ±3.48 Argon Thietane 0.57 -3.79 Argon Oxetane2 0.67 0.14 ±3.5 Argon Chlorocyclobutane3 1.27 2.82 -2.52 Argon Cyclopentanone 0.95 0.80 ±3.46 Neon Cyclopentanone 0.91 0.78 ±3.26 1Munrow, M.R.;Pringle, W.C.; Novick, S.E.; J. Phys. Chem. A 103, 2256-2261 (1999) 2 Lorenzo, F.; Lessari, A.; Lopez, J.C.; Alonso, J.L.; Chemical Physics Letters 286(3,4), 272-276 (1998) 3 Subramanian, R; Szarko, J.M.; Pringle, W.C.; Novick, S.E.; J. Mol. Struct. 742(1-3) 165-172 (2005) * On the PAS of the parent molecule upon complexation with Argon or Neon

van der Waals Complexes Argon Methylene Cyclobutane Argon Cyclopentanone

Cyclopenteneoxide a b c a

Cyclopenteneoxide Experimental Conditions 0.5% Cyclopenteneoxide in Argon ~2 atm backing pressure 5-20 GHz range Isotopomers observed in natural abundance

Cyclopentenoxide Results 25 a-type transitions 21 c-type transitions a b

Spectroscopic Constants for Cyclopenteneoxide W. J. Lafferty 12C5H8O α-13C ββ’-13C γγ’-13C 18O A (MHz) 5709.38 5709.4232(9) 5699.983(5) 5614.409(1) 5665.4784(3) 5649.9182(9) B (MHz) 4541.12 4541.1209(9) 4455.8299(2) 4520.1731(4) 4512.4125(1) 4380.1364(5) C (MHz) 3248.97 3248.9878(8) 3208.3011(2) 3208.7750(3) 3226.95203(9) 3184.3642(4) ΔJ (kHz) 0.86(4) 0.86* ΔJK (kHz) 0.71(2) 0.71* ΔK (kHz) 1.03(2) 1.03* δJ (kHz) 0.150(5) 0.150* δK (kHz) 0.31(2) 0.31* N 24 46 6 7 σ (kHz) 5 1 * Fixed to the all 12C parent isotopomer

Cyclopenteneoxide Improved all 12C rotational constants Determined the 5 quartic centrifugal distortion constants Three 13C isotopomers 18O isotopomer Complete heavy atom substitution structure Accurate starting structure for the Argon complex investigation

Argon Cyclopenteneoxide Experimental Conditions 0.5% Cyclopenteneoxide in Argon gas ~2 atm backing pressure 5-20 GHz range Possible complex lines tested against Neon Isotopomers observed in natural abundance Our experimental conditions for the argon complex were roughly the same for that of cyclopenteneoxide itself The only difference was that for any candidate for the argon complex, we tested these transition against a tank of cyclopenteneoxide in neon gas to help confirm that these transitions were indeed for the argon complex

vdW Complex Results 130 frequencies observed and fit 75 strong a-type transitions 55 weak b-type transitions b

Where is Argon? a = | 0.27 | Å b = | 0.42 | Å c = | 3.91 | Å Position of Argon in the Principal Axis System (PAS) of Cyclopenteneoxide a = | 0.27 | Å b = | 0.42 | Å c = | 3.91 | Å

Spectroscopic Constants for the Argon Cyclopenteneoxide Complex   Ar-12C5H8O Ar-α13C Ar-ββ’13C Ar-γγ’13C A (MHz) 3268.2537(5) 3225.761(6)  3227.759(6) 3245.744(1) B (MHz) 993.3458(2)  988.4684(5) 988.4942(6) 990.9177(3) C (MHz) 950.4300(2)  942.3021(5) 947.7585(7) 948.1404(3) ΔJ (kHz) 2.2319(9) 2.201(4) 2.214(5) 2.2218(3) ΔJK (kHz) 14.82(1) 14.82* ΔK (kHz) 16.15(4) 16.15* δJ (kHz) 0.0940(5) 0.0940* δK (kHz) 4.90(9) 4.90* ΦJJK (kHz) 0.00063(9) 0.00063* ΦJKK (kHz) -0.0020(3) -0.0020* N 130 16  23 29 σ (kHz) 4  5 5 * Fixed to the all 12C parent isotopomer

Signs of rs Position of Argon Structure of complex in PAS of the monomer α-12C position has same Kraitchman coordinates as only one of the four α-13C positions Argon position determined c α13C a b

Argon is Below Oxygen! a = 0.27Å, b = 0.42Å, c = -3.91Å Position of Argon in the Principal Axis System (PAS) of Cyclopenteneoxide a = 0.27Å, b = 0.42Å, c = -3.91Å c a a a b

Argon Coordinates in the PAS of Cyclopenteneoxide   a (Å) b (Å) c (Å) rs 0.27 0.42 -3.91 r0 0.42  0.56 -3.88  rm(1) 0.18  0.00 -3.93  * r0 and Watson’s rm(1) calculations courtesy of Professor Zbigniew Kisiel’s programs STRFIT and PMIFST, available at    http://info.ifpan.edu.pl/~kisiel/prospe.htm

Wide Amplitude Cross Ring Motion

van der Waals Complexes  vdW complex a* b* c* Argon Methylene Cyclobutane 0.11 0.51 +3.62 Argon Cyclobutanone 0.23 0.55 ±3.48 Argon Thietane 0.57 -3.79 Argon Oxetane 0.67 0.14 ±3.5 Argon Chlorocyclobutane 1.27 2.82 -2.52 Argon Cyclopentanone 0.95 0.80 ±3.46 Neon Cyclopentanone 0.91 0.78 ±3.26 Argon Cyclopenteneoxide  0.27 0.42 -3.91 * Position of rare gas in the principal axis system of each individual molecule

rs Position of Argon X X: b b b b Equivalent 13C spectra for C=CH2 0.51 Å C=O 0.55 Å S 0.57 Å O 0.14 Å b 2.70 Å X b b b 0.80 Å b 0.42 Å Equivalent 13C spectra for isotopomers of the complex Unique 13C spectra for each isotopomer of the complex

Conclusion vdW interaction with positive atoms Lewis Acid Charge Color Legend: vdW interaction with positive atoms Lewis Acid General model