TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 full duplex data:

Slides:



Advertisements
Similar presentations
Introduction 1 Lecture 13 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.
Advertisements

2: Transport Layer 31 Transport Layer 3. 2: Transport Layer 32 TCP Flow Control receiver: explicitly informs sender of (dynamically changing) amount of.
Transportation Layer. Very similar to the data link layer. – two hosts connected by a link or two hosts connected by a network differences: – When two.
Transport Layer3-1 TCP. Transport Layer3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection.
Data Communications and Computer Networks Chapter 3 CS 3830 Lecture 16 Omar Meqdadi Department of Computer Science and Software Engineering University.
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
1 Transport Layer Lecture 9 Imran Ahmed University of Management & Technology.
Transport Layer3-1 Summary of Reliable Data Transfer Checksums help us detect errors ACKs and NAKs help us deal with errors If ACK/NAK has errors sender.
Week 9 TCP9-1 Week 9 TCP 3 outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management.
Transport Layer3-1 Pipelined protocols Pipelining: sender allows multiple, “in-flight”, yet-to- be-acknowledged pkts m range of sequence numbers must be.
Transport Layer1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r reliable, in-order byte steam: m no “message boundaries” r pipelined: m TCP congestion.
3: Transport Layer3b-1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum.
Chapter 3 outline 3.1 transport-layer services
TCP Details: Roadmap Data Flow Timeout/Retransmission
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
Transport Layer Transport Layer: TCP. Transport Layer 3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional.
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
1 Announcement r Project 2 out m Much harder than project 1, start early! r Homework 2 due next Tuesday.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
3: Transport Layer3b-1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum.
Announcement Project 2 out –Much harder than project 1, start early! Homework 2 due next Tu.
Chapter 3 Transport Layer
1 TCP latency modeling. 2 Q: How long does it take to receive an object from a Web server after sending a request? r TCP connection establishment r data.
The Future r Let’s look at the homework r The next test is coming the 19 th (just before turkey day!) r Monday will finish TCP canned slides r Wednesday.
Transport Layer3-1 Data Communication and Networks Lecture 7 Transport Protocols: TCP October 21, 2004.
Announcement Homework 1 graded Homework 2 out –Due in a week, 1/30 Project 2 problems –Minet can only compile w/ old version of gcc (2.96). –Only tlab-login.
Transport Layer session 1 TELE3118: Network Technologies Week 9: Transport Layer Basics Some slides have been taken from: r Computer Networking:
TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 point-to-point:
Transport Layer3-1 TCP sender (simplified) NextSeqNum = InitialSeqNum SendBase = InitialSeqNum loop (forever) { switch(event) event: data received from.
Network LayerII-1 RSC Part III: Transport Layer 3. TCP Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part.
Transport Layer1 Reliable Transfer Ram Dantu (compiled from various text books)
3: Transport Layer3b-1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum.
2: Transport Layer 21 Transport Layer 2. 2: Transport Layer 22 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data.
1 End-to-End Protocols (UDP, TCP, Connection Management)
September 26 th, 2013 CS1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights.
TCP. TCP ACK generation [RFC 1122, RFC 2581] Event at Receiver Arrival of in-order segment with expected seq #. All data up to expected seq # already.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Connection-oriented transport: TCP. Transport Layer 3-2 TCP: Overview RFCs: 793,1122,1323, 2018, 2581  full duplex data:  bi-directional data flow in.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer3-1 Transport Layer If you are going through Hell Keep going.
Transport Layer1 Goals: r understand principles behind transport layer services and protocols: m UDP m TCP Overview: r transport layer services r multiplexing/demultiplexing.
Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
CSEN 404 Transport Layer II Amr El Mougy Lamia AlBadrawy.
DMET 602: Networks and Media Lab Amr El Mougy Yasmeen EssamAlaa Tarek.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
09-Transport Layer: TCP Transport Layer.
Chapter 3 Transport Layer
COMP 431 Internet Services & Protocols
Chapter 3 outline 3.1 Transport-layer services
DMET 602: Networks and Media Lab
Chapter 3 outline 3.1 transport-layer services
CS 1652 Jack Lange University of Pittsburgh
Slides have been adapted from:
Introduction to Networks
TCP overview Advanced Networks 2002.
CS1652 TCP Jack Lange University of Pittsburgh
Review: UDP demultiplexing TCP demultiplexing Multiplexing?
Chapter 3 Transport Layer
Transport Layer Goals: Overview:
Chapter 5 TCP Transmission Control
CSE 4213: Computer Networks II
CS4470 Computer Networking Protocols
Chapter 3 outline 3.1 Transport-layer services
TCP Review.
TCP 3: Transport Layer.
Transmission Control Protocol (TCP)
Transportation Layer.
TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 point-to-point:
Chapter 3 Transport Layer
Lecture 5 – Chapter 3 CIS 5617, Spring2019 Anduo Wang
Presentation transcript:

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 full duplex data: bi-directional data flow in same connection MSS: maximum segment size connection-oriented: handshaking (exchange of control msgs) init’s sender, receiver state before data exchange flow controlled: sender will not overwhelm receiver point-to-point: one sender, one receiver reliable, in-order byte steam: no “message boundaries” pipelined: TCP congestion and flow control set window size send & receive buffers

TCP segment structure source port # dest port # application data 32 bits application data (variable length) sequence number acknowledgement number rcvr window size ptr urgent data checksum F S R P A U head len not used Options (variable length) URG: urgent data (generally not used) counting by bytes of data (not segments!) ACK: ACK # valid PSH: push data now (generally not used) # bytes rcvr willing to accept RST, SYN, FIN: connection estab (setup, teardown commands) Internet checksum (as in UDP)

simple telnet scenario TCP seq. #’s and ACKs Seq. #’s: byte stream “number” of first byte in segment’s data ACKs: seq # of next byte expected from other side cumulative ACK Q: how receiver handles out-of-order segments A: TCP spec doesn’t say, - up to implementor Host A Host B User types ‘C’ Seq=42, ACK=79, data = ‘C’ host ACKs receipt of ‘C’, echoes back ‘C’ Seq=79, ACK=43, data = ‘C’ host ACKs receipt of echoed ‘C’ Seq=43, ACK=80 time simple telnet scenario

TCP: reliable data transfer event: data received from application above simplified sender, assuming one way data transfer no flow, congestion control create, send segment wait for event wait for event event: timer timeout for segment with seq # y retransmit segment event: ACK received, with ACK # y ACK processing

TCP: reliable data transfer 00 sendbase = initial_sequence number 01 nextseqnum = initial_sequence number 02 03 loop (forever) { 04 switch(event) 05 event: data received from application above 06 create TCP segment with sequence number nextseqnum 07 start timer for segment nextseqnum 08 pass segment to IP 09 nextseqnum = nextseqnum + length(data) 10 event: timer timeout for segment with sequence number y 11 retransmit segment with sequence number y 12 compue new timeout interval for segment y 13 restart timer for sequence number y 14 event: ACK received, with ACK field value of y 15 if (y > sendbase) { /* cumulative ACK of all data up to y */ 16 cancel all timers for segments with sequence numbers < y 17 sendbase = y 18 } 19 else { /* a duplicate ACK for already ACKed segment */ 20 increment number of duplicate ACKs received for y 21 if (number of duplicate ACKS received for y == 3) { 22 /* TCP fast retransmit */ 23 resend segment with sequence number y 24 restart timer for segment y 25 } 26 } /* end of loop forever */ TCP: reliable data transfer Simplified TCP sender

TCP ACK generation [RFC 1122, RFC 2581] Event in-order segment arrival, no gaps, everything else already ACKed one delayed ACK pending out-of-order segment arrival higher-than-expect seq. # gap detected arrival of segment that partially or completely fills gap TCP Receiver action delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK immediately send single cumulative ACK send duplicate ACK, indicating seq. # of next expected byte immediate ACK if segment starts at lower end of gap

TCP: retransmission scenarios Host A Seq=92, 8 bytes data ACK=100 loss timeout time lost ACK scenario Host B X Host A Host B Seq=92, 8 bytes data Seq=100, 20 bytes data Seq=92 timeout ACK=100 Seq=100 timeout ACK=120 Seq=92, 8 bytes data ACK=120 time premature timeout, cumulative ACKs

TCP Flow Control flow control receiver: explicitly informs sender of (dynamically changing) amount of free buffer space RcvWindow field in TCP segment sender: keeps the amount of transmitted, unACKed data less than most recently received RcvWindow sender won’t overrun receiver’s buffers by transmitting too much, too fast RcvBuffer = size or TCP Receive Buffer RcvWindow = amount of spare room in Buffer receiver buffering

TCP Round Trip Time and Timeout Q: how to set TCP timeout value? longer than RTT note: RTT will vary too short: premature timeout unnecessary retransmissions too long: slow reaction to segment loss Q: how to estimate RTT? SampleRTT: measured time from segment transmission until ACK receipt ignore retransmissions, cumulatively ACKed segments SampleRTT will vary, want estimated RTT “smoother” use several recent measurements, not just current SampleRTT

TCP Round Trip Time and Timeout EstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTT Exponential weighted moving average influence of given sample decreases exponentially fast typical value of x: 0.1 Setting the timeout EstimtedRTT plus “safety margin” large variation in EstimatedRTT -> larger safety margin Timeout = EstimatedRTT + 4*Deviation Deviation = (1-x)*Deviation + x*|SampleRTT-EstimatedRTT|

An Example of Initial Timeout RTT samples

TCP Timeout: Repeated Retransmission Exponential backoff: Double timeout value after each retransmission Max 64 seconds1 Max 12 restransmits1 Discussion: why exponential backoff? (1) Net/3 BSD