An Introduction to Linear Programming Pertemuan 4

Slides:



Advertisements
Similar presentations
2.7 Linear Programming.
Advertisements

© 2003 Anita Lee-Post Linear Programming Part 2 By Anita Lee-Post.
Linear Programming Problem
Lecture 3 Linear Programming: Tutorial Simplex Method
Linear Programming Graphical Solution Procedure. Two Variable Linear Programs When a linear programming model consists of only two variables, a graphical.
Ch 3 Introduction to Linear Programming By Kanchala Sudtachat.
CCMIII U2D4 Warmup This graph of a linear programming model consists of polygon ABCD and its interior. Under these constraints, at which point does the.
BA 452 Lesson A.2 Solving Linear Programs 1 1ReadingsReadings Chapter 2 An Introduction to Linear Programming.
Operations Control Key Sources: Data Analysis and Decision Making (Albrigth, Winston and Zappe) An Introduction to Management Science: Quantitative Approaches.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Linear Programming Models: Graphical Methods
Managerial Decision Modeling with Spreadsheets
Chapter 2 Linear Programming Models: Graphical and Computer Methods © 2007 Pearson Education.
Chapter 8: Linear Programming
Chapter 2: Introduction to Linear Programming
An Introduction to Linear Programming : Graphical and Computer Methods
LINEAR PROGRAMMING: THE GRAPHICAL METHOD
Chapter 3 An Introduction to Linear Programming
3 Components for a Spreadsheet Linear Programming Problem There is one cell which can be identified as the Target or Set Cell, the single objective of.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
1 1 Slides by John Loucks St. Edward’s University Modifications by A. Asef-Vaziri.
Readings Readings Chapter 2 An Introduction to Linear Programming.
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
FORMULATION AND GRAPHIC METHOD
Graphical Solutions Plot all constraints including nonnegativity ones
1 1 Slide LINEAR PROGRAMMING: THE GRAPHICAL METHOD n Linear Programming Problem n Properties of LPs n LP Solutions n Graphical Solution n Introduction.
Linear Programming Models: Graphical and Computer Methods
Stevenson and Ozgur First Edition Introduction to Management Science with Spreadsheets McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies,
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS ST. EDWARD’S UNIVERSITY.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 6S Linear Programming.
1 1 Slide Linear Programming (LP) Problem n A mathematical programming problem is one that seeks to maximize an objective function subject to constraints.
MATH 527 Deterministic OR Graphical Solution Method for Linear Programs.
P I can solve linear programing problem. Finding the minimum or maximum value of some quantity. Linear programming is a form of optimization where.
Chapter 7 Introduction to Linear Programming
1 1 Slide © 2005 Thomson/South-Western Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization.
Linear Programming McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Linear Programming: Sensitivity Analysis and Interpretation of Solution Pertemuan 5 Matakuliah: K0442-Metode Kuantitatif Tahun: 2009.
LP: Summary thus far Requirements Graphical solutions Excel Sensitivity Analysis.
QMB 4701 MANAGERIAL OPERATIONS ANALYSIS
5. Linear Programming Objectives: 1.Problem formulation 2.Solving an LP problem graphically 3.Bounded regions and corner points Refs: B&Z 5.2.
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
A LINEAR PROGRAMMING PROBLEM HAS LINEAR OBJECTIVE FUNCTION AND LINEAR CONSTRAINT AND VARIABLES THAT ARE RESTRICTED TO NON-NEGATIVE VALUES. 1. -X 1 +2X.
Chapter 2 Introduction to Linear Programming n Linear Programming Problem n Problem Formulation n A Maximization Problem n Graphical Solution Procedure.
Monday WARM-UP: TrueFalseStatementCorrected Statement F 1. Constraints are conditions written as a system of equations Constraints are conditions written.
Sensitivity analysis continued… BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly.
3 Components for a Spreadsheet Optimization Problem  There is one cell which can be identified as the Target or Set Cell, the single objective of the.
Kerimcan OzcanMNGT 379 Operations Research1 Linear Programming Chapter 2.
© 2009 Prentice-Hall, Inc. 7 – 1 Decision Science Chapter 3 Linear Programming: Maximization and Minimization.
3-5: Linear Programming. Learning Target I can solve linear programing problem.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 Introduction to Linear Programming Linear Programming Problem Linear Programming Problem Problem Formulation Problem Formulation A Simple Maximization.
1 1 Slide Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an.
1 2 Linear Programming Chapter 3 3 Chapter Objectives –Requirements for a linear programming model. –Graphical representation of linear models. –Linear.
Chapter 9: Systems of Equations and Inequalities; Matrices
Chapter 2 Linear Programming Models: Graphical and Computer Methods
An Introduction to Linear Programming
Decision Support Systems
2.7 Linear Programming Objectives: Use linear programming procedures to solve applications. Recognize situations where exactly one solution to a linear.
Chapter 2 An Introduction to Linear Programming
Systems of Equations and Inequalities
Linear Programming Dr. T. T. Kachwala.
prepared by Imran Ismail
Linear Programming in Two Dimensions
Introduction to linear programming (LP): Minimization
The application of mathematics and the scientific
Graphical Solution Procedure
Linear Programming Problem
Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an equation.
Presentation transcript:

An Introduction to Linear Programming Pertemuan 4 Matakuliah : K0442-Metode Kuantitatif Tahun : 2009 An Introduction to Linear Programming Pertemuan 4

Material Outline Linear Programming Problem Problem Formulation A Maximization Problem Graphical Solution Procedure Extreme Points and the Optimal Solution Computer Solutions A Minimization Problem Bina Nusantara University

Linear Programming (LP) Problem The maximization or minimization of some quantity is the objective in all linear programming problems. All LP problems have constraints that limit the degree to which the objective can be pursued. A feasible solution satisfies all the problem's constraints. An optimal solution is a feasible solution that results in the largest possible objective function value when maximizing (or smallest when minimizing). A graphical solution method can be used to solve a linear program with two variables.

Linear Programming (LP) Problem If both the objective function and the constraints are linear, the problem is referred to as a linear programming problem. Linear functions are functions in which each variable appears in a separate term raised to the first power and is multiplied by a constant (which could be 0). Linear constraints are linear functions that are restricted to be "less than or equal to", "equal to", or "greater than or equal to" a constant.

Problem Formulation Problem formulation or modeling is the process of translating a verbal statement of a problem into a mathematical statement.

Guidelines for Model Formulation Understand the problem thoroughly. Describe the objective. Describe each constraint. Define the decision variables. Write the objective in terms of the decision variables. Write the constraints in terms of the decision variables.

Example 1: A Maximization Problem LP Formulation Max 5x1 + 7x2 s.t. x1 < 6 2x1 + 3x2 < 19 x1 + x2 < 8 x1, x2 > 0

Example 1: Graphical Solution Constraint #1 Graphed x2 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 x1 < 6 (6, 0) x1

Example 1: Graphical Solution Constraint #2 Graphed x2 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 (0, 6 1/3) 2x1 + 3x2 < 19 (9 1/2, 0) x1

Example 1: Graphical Solution Constraint #3 Graphed x2 (0, 8) 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 x1 + x2 < 8 (8, 0) x1

Example 1: Graphical Solution Combined-Constraint Graph x2 x1 + x2 < 8 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 x1 < 6 2x1 + 3x2 < 19 x1

Example 1: Graphical Solution Feasible Solution Region x2 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 Feasible Region x1

Example 1: Graphical Solution Objective Function Line 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 (0, 5) Objective Function 5x1 + 7x2 = 35 (7, 0) x1

Example 1: Graphical Solution Optimal Solution x2 Objective Function 5x1 + 7x2 = 46 Optimal Solution (x1 = 5, x2 = 3) x1

Summary of the Graphical Solution Procedure for Maximization Problems Prepare a graph of the feasible solutions for each of the constraints. Determine the feasible region that satisfies all the constraints simultaneously.. Draw an objective function line. Move parallel objective function lines toward larger objective function values without entirely leaving the feasible region. Any feasible solution on the objective function line with the largest value is an optimal solution.

Extreme Points and the Optimal Solution The corners or vertices of the feasible region are referred to as the extreme points. An optimal solution to an LP problem can be found at an extreme point of the feasible region. When looking for the optimal solution, you do not have to evaluate all feasible solution points. You have to consider only the extreme points of the feasible region.

Example 1: Graphical Solution The Five Extreme Points 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 5 4 Feasible Region 3 1 2 x1

Computer Solutions Computer programs designed to solve LP problems are now widely available. Most large LP problems can be solved with just a few minutes of computer time. Small LP problems usually require only a few seconds. Linear programming solvers are now part of many spreadsheet packages, such as Microsoft Excel.

Example 2: A Minimization Problem LP Formulation Min 5x1 + 2x2 s.t. 2x1 + 5x2 > 10 4x1 - x2 > 12 x1 + x2 > 4 x1, x2 > 0

Example 2: Graphical Solution Graph the Constraints Constraint 1: When x1 = 0, then x2 = 2; when x2 = 0, then x1 = 5. Connect (5,0) and (0,2). The ">" side is above this line. Constraint 2: When x2 = 0, then x1 = 3. But setting x1 to 0 will yield x2 = -12, which is not on the graph. Thus, to get a second point on this line, set x1 to any number larger than 3 and solve for x2: when x1 = 5, then x2 = 8. Connect (3,0) and (5,8). The ">" side is to the right. Constraint 3: When x1 = 0, then x2 = 4; when x2 = 0, then x1 = 4. Connect (4,0) and (0,4). The ">" side is above this line.

Example 2: Graphical Solution Constraints Graphed 5 4 3 2 1 Feasible Region x2 4x1 - x2 > 12 x1 + x2 > 4 2x1 + 5x2 > 10 1 2 3 4 5 6 x1

Example 2: Graphical Solution Graph the Objective Function Set the objective function equal to an arbitrary constant (say 20) and graph it. For 5x1 + 2x2 = 20, when x1 = 0, then x2 = 10; when x2= 0, then x1 = 4. Connect (4,0) and (0,10). Move the Objective Function Line Toward Optimality Move it in the direction which lowers its value (down), since we are minimizing, until it touches the last point of the feasible region, determined by the last two constraints.

Example 2: Graphical Solution Objective Function Graphed Min z = 5x1 + 2x2 4x1 - x2 > 12 x1 + x2 > 4 5 4 3 2 1 x2 2x1 + 5x2 > 10 1 2 3 4 5 6 x1

Example 2: Graphical Solution Solve for the Extreme Point at the Intersection of the Two Binding Constraints 4x1 - x2 = 12 x1+ x2 = 4 Adding these two equations gives: 5x1 = 16 or x1 = 16/5. Substituting this into x1 + x2 = 4 gives: x2 = 4/5

Example 2: Graphical Solution Solve for the Optimal Value of the Objective Function Solve for z = 5x1 + 2x2 = 5(16/5) + 2(4/5) = 88/5. Thus the optimal solution is x1 = 16/5; x2 = 4/5; z = 88/5

Example 2: Graphical Solution Optimal Solution Min z = 5x1 + 2x2 4x1 - x2 > 12 x1 + x2 > 4 5 4 3 2 1 x2 2x1 + 5x2 > 10 Optimal: x1 = 16/5 x2 = 4/5 1 2 3 4 5 6 x1

Feasible Region The feasible region for a two-variable linear programming problem can be nonexistent, a single point, a line, a polygon, or an unbounded area. Any linear program falls in one of three categories: is infeasible has a unique optimal solution or alternate optimal solutions has an objective function that can be increased without bound A feasible region may be unbounded and yet there may be optimal solutions. This is common in minimization problems and is possible in maximization problems.