High-Resolution Infrared Spectrum of the  1 band of 5-C5H5NiNO

Slides:



Advertisements
Similar presentations
Infrared spectroscopy of metal ion-water complexes
Advertisements

Complementary Use of Modern Spectroscopy and Theory in the Study of Rovibrational Levels of BF 3 Robynne Kirkpatrick a, Tony Masiello b, Alfons Weber c,
Infrared Spectroscopy
R. S. RAM and P. F. BERNATH Department of Chemistry, University of York, Heslington, York YO10 5DD, UK. and Department of Chemistry, University of Arizona,
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Raman Spectroscopy Laser 4880 Å. Raman Spectroscopy.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College.
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
Raman Spectroscopy Laser 4880 Å. Raman Spectroscopy.
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
Vibrational Transitions
Lecture 3 INFRARED SPECTROMETRY
Infrared Spectroscopy of Doubly-Charged Metal-Water Complexes
Experience in a Microwave Spectroscopy Lab BRENDAN FRY ACKNOWLEDGMENTS: Dr. Stephen Kukolich Adam Daly Chandana Karunatilaka Space Grant Symposium April.
Spectroscopic Analysis Part 4 – Molecular Energy Levels and IR Spectroscopy Chulalongkorn University, Bangkok, Thailand January 2012 Dr Ron Beckett Water.
RamanRaman. Scattering Tyndall scattering – if small particles are present During Rayleigh scattering (interaction of light with relatively small molecules)
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
Columbus, June , 2005 Stark Effect in X 2 Y 4 Molecules: Application to Ethylene M. ROTGER, W. RABALLAND, V. BOUDON, and M. LOËTE Laboratoire de.
High-resolution threshold photoionization and photoelectron spectroscopy of propene and 2-butyne Julie M. Michaud, Konstantina Vasilatou and Frédéric Merkt.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
Pulsed Field Ionization-Zero Electron Kinetic Energy (PFI-ZEKE) Spectroscopy of Sc-C 6 H 5 X(X=F,CH 3,OH) Complexes Changhua Zhang, Serge A. Krasnokutskia.
The effective Hamiltonian for the ground state of 207 Pb 19 F and the fine structure spectrum Trevor J. Sears Brookhaven National Laboratory and Stony.
Important concepts in IR spectroscopy
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
SPECTROSCOPY AND ANALYTICAL CHEMISTRY  A variety of spectroscopic techniques can be used to study/elucidate ground and excited state atomic and molecular.
June 21, th International Symposium on Molecular Spectroscopy Fourier-Transform Microwave Spectroscopy of FeCN (X 4  i ): Confirmation of the.
Antonio D. Brathwaite University of the Virgin Islands, St Thomas, USVI.
June 25, th International Symposium on Molecular Spectroscopy Hyperfine Resolved Pure Rotational Spectroscopy of ScN, YN, and BaNH (X 1  + ):
OSU-05 TA 101 The Structure of Ethynylferrocene using Microwave Spectroscopy. Ranga Subramanian, Chandana Karunatilaka, Kristen Keck and Stephen Kukolich.
Fourier Transform Emission Spectroscopy of Some New Bands of ReN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ and P. F. Bernath.
Microwave Spectroscopy Wave length ~ 1 cm to 100  m Wave number ~ 1 to 100 cm -1. Frequency ~ 3 x to 3 x Hz Energy ~ 10 to 1000 Joules/mole.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
Photoelectron Spectroscopy of Pyrazolide Anion Three Low-lying Electronic States of the Pyrazolyl Radical Adam J. Gianola Takatoshi Ichino W. Carl Lineberger.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
Chapter 8. Molecular Motion and Spectroscopy
Introduction to Infrared Spectroscopy
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
Absorption Spectroscopy
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
pgopher in the Classroom and the Laboratory chm. bris
Fourier Transform Emission Spectroscopy of New Visible Systems of NbN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ And P.
THE ANALYSIS OF 2ν3 BAND OF HTO
Spectroscopy Microwave (Rotational) Infrared (Vibrational)
Molecular Spectroscopy
High resolution far-IR spectroscopy of HFC-134a at cold temperatures
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
Vibrational spectral investigations of Glyoxime
The CP-FTMW Spectrum of Bromoperfluoroacetone
SIMULATIONS OF VIBRONIC LEVELS IN DEGENERATE ELECTRONIC STATES IN THE PRESENCE OF JAHN-TELLER COUPLING – EXPANSION OF PES THROUGH THIRD ORDER VADIM L.
Spectroscopy Chem honors.
Molecular Vibrations and IR Spectroscopy
Analysis of the Rotationally Resolved Spectra to the Degenerate (
Analytical methods Prepared By Dr. Biswajit Saha.
Molecular Vibrations and IR Spectroscopy
INFRARED SPECTROSCOPY Dr. R. P. Chavan Head, Department of Chemistry
Synthesis of Deuterocycloheptatrienyl-cyclopentadienyl-titanium
Fourier Transform Emission Spectroscopy of CoH and CoD
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Fourier Transform Infrared Spectral
Modularity In Design for Microwave Spectroscopy Equipment
Methylindoles – Microwave Spectroscopy
Rigid Diatomic molecule
This is the far infra red spectrum of the diatomic molecule CO
I = μr2 μ = m1m2/(m1+m2) I (uÅ2) = / B(cm-1)
Michal M. Serafin, Sean A. Peebles
Molecular Vibrations and IR Spectroscopy
Experimental Measurement of the Induced Dipole Moment of an Isolated Molecule in Its Ground and Electronically Excited States. Indole and Indole-H2O.*
Hua Guo,2 and Gary E. Douberly*,1
The Rigid Rotor.
Presentation transcript:

High-Resolution Infrared Spectrum of the  1 band of 5-C5H5NiNO Chandana Karunatilaka, Davian Pedroza, Stephen G. Kukolich Department of Chemistry, 1306E. University Blvd., University of Arizona, Tucson, AZ, 85721, USA. Ranga Subramanian Department of Chemistry, Tulane University, New Orleans, LA 70118, USA. Deanne J. Idar Los Alamos National Laboratory, P.O.Box 1663, Los Lamos, NM, 87545, USA.

Cyclopentadienylnickel nitrosyl, 5-C5H5NiNO -bonded Transition metal complex • Prolate Symmetric-top • Point group – C5v (Microwave Spectroscopy) A.P.Cox, L.F.Thomas, and J.Sheridan, Nature 181 (1958) 1157. Ni-N-O moiety is linear. (Electron Diffraction & Microwave studies) Ronova, N.V.Aleskeeva, N.N.Veniamikov and M.Kravers, J.Struct.Chem.16 (1975) 441. Cox, A.P; Brittain, A.H. Transaction of the Faraday Society (1970), 66(3), 557-62.

Importance  Polymerization of terminal alkynes Excellent catalyst  Cyclo-oligomerization of di-alkenes  Polymerization of terminal alkynes One of the first organometallic molecules to be studied using Microwave Spectroscopy.

Previous Spectroscopic studies • Low Resolution IR Spectroscopy  IR and Raman active frequencies • Microwave Spectroscopy  Structure in v = 0 level  14N quadrupole coupling strength • Photoelectron Spectroscopy  Orbital energies  Ionization energies R.D.Feltham, and W.G.Fately, Spectrochim. Acta. 20 (1964) 1081. S.G.Kukolich, J.V.Rund, D.J.Pauley, and R.E.Bumgarner, JACS. 110 (1988) 7356. A.P.Cox, J.Randall, and A.C.Legon, Chem.Phys. Lett. 153 (1988) 253. Xiaorong Li, J.S.Tse, G.M.Bancroft, R.J.Puddephatt, K.H.Tan, Inorg. Chem. (1996) 35(9) 2515. • PRESENT STUDY  High Resolution Infrared spectrum ( rovibrational structure)

Experiment (C5H5)2Ni C5H5NiNO Nickelocene Pentane / ice temp. Purge NO gas for 6-7 hrs bright red liquid Source Sample in Vacuum FT Spectrometer - Kitt Peak Arizona (built by Jim Brault) Computer sample cell

Data Analysis • Line list for the center frequency  PC-GREMLIN* • Fundamental vibration  A1 - symmetric stretch of C-H • Transition dipole moment  // symmetry axis IR active parallel ( // ) band * Dr. Ram S. Ram provided this program.

Data Analysis • Altogether 24 lines  SPFIT** fitting program [rigid-rotor Hamiltonian & centrifugal distortion constants] • Four adjustable parameters  rotational constants for v = 1 ( A , B  )  B rotational constant for v = 0 ( B  )  vibration band center ( 0 ) • Neglected nuclear quadrupole coupling of 14N  (much smaller!) • Fixed distortion constants to previous microwave values. **H.M.Pickett , J.Mol.Spectroscopy 148 (1991) 371 .

The structural parameters obtained for the CpNiNO complex (in cm-1) a : FTMW values b: Low Resolution IR value c: Fixed to DFT (theory)

Results • Rotational constants  Ground (B ) & Excited vibrational states (A , B ) B  - B  = 0.00065 cm-1 A = 0.14324(8) cm-1  Consistent with DFT values Fundamental C-H stretching frequency = 3110.414(1) cm-1 Agree very well (<1%) with the previous FTMW , IR & current DFT results • Present High Resolution IR data Understand the structure in the v = 1 state

Acknowledgements Dr. Michael Dulick – Kitt Peak National Observatory, Arizona. Dr. Ram S. Ram - University of Arizona.

Thank you for your attention !