ECE 695 Discussion Session GaN HEMT Technology – Recent Advances

Slides:



Advertisements
Similar presentations
MICROWAVE FET Microwave FET : operates in the microwave frequencies
Advertisements

Microwave Solid State Power Devices Yonglai Tian
Nanostructures Research Group Center for Solid State Electronics Research Quantum corrected full-band Cellular Monte Carlo simulation of AlGaN/GaN HEMTs.
(AlGaN/GaN) High electron mobility transistors Low dimensional System Master of Nanoscience Olatz Idigoras Lertxundi.
High Electron Mobility Transistors
GaN HEMT Power Switch 의 특성 향상 방안 최영환.
GaN based Heterojunction Bipolar Transistors
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
1 Interface roughness scattering in ultra-thin GaN channels in N-polar enhancement-mode GaN MISFETs Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh.
Nitride semiconductors and their applications Part II: Nitride semiconductors.
Mobility Chapter 8 Kimmo Ojanperä S , Postgraduate Course in Electron Physics I.
Ting-Chi Lee OES, ITRI 11/07/2005 GaN-based Heterostructure Field-Effect Transistors.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
ELECT /01/03 SiC basic properties The basic properties of SiC makes it a material of choice for fabricating devices operating at high power and high.
Leakage current of device HEMT versus MOSFET 이진식.
Properties of HfO 2 Deposited on AlGaN/GaN Structures Using e-beam Technique V. Tokranov a, S. Oktyabrsky a, S.L. Rumyantsev b, M.S. Shur b, N. Pala b,c,
Introduction to FinFet
Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
ULIS 2003-Udine Italy Evolution of Si-SiO 2 interface trap density under electrical stress in MOSFETs with ultrathin oxides F. Rahmoune and D. Bauza Institut.
InAs Inserted HEMT 연성진.
Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB Status of HVPE GaN Growth and The Piezoelectric.
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
Midterm 2 performance Full points is 48. Average is
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
Wideband Gap Semiconductors and New Trends in Power Electronics
4H-SIC DMOSFET AND SILICON CARBIDE ACCUMULATION-MODE LATERALLY DIFFUSED MOSFET Archana N- 09MQ /10/2010 PSG COLLEGE OF TECHNOLOGY ME – Power Electronics.
High Electron Mobility Transistor
Indium Phosphide and Related Materials
Gallium Nitride Research & Development Rakesh Sohal
DOUBLE-GATE DEVICES AND ANALYSIS 발표자 : 이주용
Fatemeh (Samira) Soltani University of Victoria June 11 th
Review of Semiconductor Devices
Power MOSFET Pranjal Barman.
Outline Introduction Module work on crystal re-growth velocity study
Contents GaAs HEMTs overview RF (Radio Frequency) characteristics
Nitride semiconductors and their applications
Barrier Current Flow in Nitride Heterostructures
Introduction to GaAs HBT and current technologies
Graphene Based Transistors-Theory and Operation; Development State
MoS2 RF Transistor Suki Zhang 02/15/17.
High Temperature Devices Based Upon Silicon Carbide
SiC Power Devices Vaibhav Ostwal
TriQuint Semiconductor, Inc.
Lower Limits To Specific Contact Resistivity
MBE Growth of Graded Structures for Polarized Electron Emitters
1 Tyndall National Institute, Lee Maltings, Dyke Parade, Cork, Ireland
Metal Semiconductor Field Effect Transistors
Device Structure & Simulation
Contact Resistance Modeling in HEMT Devices
High Transconductance Surface Channel In0. 53Ga0
Other FET’s and Optoelectronic Devices
Downsizing Semiconductor Device (MOSFET)
Nanowire Gate-All-Around (GAA) FETs
Lecture 19 OUTLINE The MOSFET: Structure and operation
Diamond Substrates for High Power Density Electronics
Strained Silicon MOSFET
Optional Reading: Pierret 4; Hu 3
Downsizing Semiconductor Device (MOSFET)
Yufei Wu, Jesús A. del Alamo
Mechanical Stress Effect on Gate Tunneling Leakage of Ge MOS Capacitor
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Lecture #15 OUTLINE Diode analysis and applications continued
Hong Zhou, Jinhyun Noh, and Peide D. Ye Motivation
Strained Silicon Aaron Prager EE 666 April 21, 2005.
Microwave and Millimeter-wave Technology(MMT) Lab
Beyond Si MOSFETs Part 1.
Presentation transcript:

ECE 695 Discussion Session GaN HEMT Technology – Recent Advances Yen-Sung Chen Feb. 15th 2017

Outline Material Properties Results from some groups MIT Purdue UND UCSB Fujitsu Panasonic HRL Summary

Comparison of Semiconductors for Power Devices Left: M. Yoder, TED, 1996 Right up: J. Hudgins et al., IEEE Transactions on Power Electronics, 2003 Right bottom: Y. Zhang et al., TED, 2016

MIT – GaN Nanoribbon HEMT 1. Al2O3/AlGaN interface fixed positive charge. 2. Al2O3 passivation layer induces biaxial tensile stress piezoelectric field in AlGaN layer increases. 2DEG density increases Sheet resistance decreases Ron decreases MOCVD, SiC substrate ns=9.75x1012(cm-2), µ=2109(cm2/Vs). S. Joglekar et al., TED, 2016

Purdue – GaN MOSHEMT SiC substrate ALD grown lattice-matched MgCaO improves on-off ratio and Dit ns=2x1013(cm-2), µ=1200(cm2/Vs). DC: Ron=1.3(Ω-mm), gm=475(mS/mm)@Ids=350mA/mm, Vgs~-3V, Vds=5V. H. Zhou et al., EDL, 2016 InAlN/GaN vs. AlGaN/GaN: Larger spontaneous polarization difference Higher 2DEG density 2. Limited SBH and thinner barrier Higher Leakage

UND – GaN HEMT Utilized AlN substrate instead of SiC due to: wide Eg (6.2 eV vs. 3.3 eV) lower dislocation density 104 cm-2 vs. 109 cm-2) Comparable thermal conductivity (340W/m.K vs. 370 W/m.K) MBE ns=3.4x1013(cm-2), µ=180(cm2/Vs). DC: Ron=1.8(Ω-mm), gm=250(mS/mm)@Vgs=-6.8V, Vds=8V fT=120GHz, fmax=24GHz@Vgs=-7.8V, Vds=8V M. Qi et al., APL, 2017. MOCVD, SiC substrate ns=1.92x1013(cm-2), µ=1240(cm2/Vs). DC: Ron=0.16(Ω-mm), gm=653(mS/mm)@ Vgs=-3.6V, Vds=3V fT=400GHz@Vgs=-3.6V, Vds=3V fmax=33GHz (high resistance of gate geometry) Y. Yue et al., JJAP, 2013.

UCSB – GaN MISHEMT N-polar GaN: improved electron confinement, lower RC (no AlGaN) MBE, sapphire substrate DC: Ron=0.29(Ω-mm), gm=480(mS/mm)@Vgs=-4.5V, Vds=8V fT=144GHz@Vgs=-4.5V, Vds=8V, fmax=400GHz@Vgs=-4V, Vds=8V S. Dasgupta et al., APL, 2010 & D. Denninghoff et al., DRC, 2012 MBE, SiC substrate, N-polar GaN DC: Ron=0.4(Ω-mm), gm=592(mS/mm) fT=160GHz, fmax=270GHz PAE=27.8%, Pout=3.13W/mm@Vg=-3V, Vds=9V, Ids=650mA/mm Operated in W-band (96GHz) B. Romanczyk et al., IEDM 3.5, 2016

Fujitsu – GaN HEMT SiC substrate InAlGaN barrier was used instead of InAlN: Reduced gate leakage. 90% more 2DEG density. Double layer SiN => prevent oxidation and reduce current collapse. fmax=200GHz Pout=3W/mm @ 96 GHz (W-band), @Vg=-1V, Vds=20V K. Makiyama et al., IEDM 9.1, 2015

Panasonic – GaN HEMT MOCVD, GaN substrate ns=5.6x1012(cm-2), µ=1900(cm2/Vs). Thick buffer layer (16µm) reduced output capacitance. => Faster switching GaN substrate improves crystal quality Suppress current collapse. BV up to 2800V@Lgd=20µm (Ec=1.4MV/cm) H. Handa et al., IEDM 10.3, 2016. MOCVD, GaN substrate, vertical structure ns=6.1x1012(cm-2), µ=1690(cm2/Vs). Slanted channel results in larger VT C-doped GaN/p-GaN well hybrid barrier layer (HBL) boosts BV to 1700V. Regrown triple layer further reduce Ron D. Shibata et al., IEDM 10.1, 2016.

HRL – GaN HEMT (T3 Generation) Left: E-band (83GHz) 3-stage PA, measured Pout=1.37W, PAE=27% Right: G-band (180GHz) 1-stage amplifier, Pout=0.296W, PAE=3.5% DC: Ron=0.81(Ω-mm), gm=723(mS/mm)@Vgs=-1.75V, Vds=6V A. Margomenos et al., CSICS, 2014 MBE, SiC substrate ns=1.3x1013(cm-2), µ=1200(cm2/Vs), BV= 42V. DC: Ron=0.81(Ω-mm), gm=723(mS/mm)@Vgs=-1.75V, Vds=6V fT=220GHz@Vgs=-1.75V, Vds=2V fmax=400GHz@Vgs=-1.5V, Vds=6V K. Shinohara et al., IEDM 30.1, 2010

HRL – GaN HEMT (T4 & T4A Generation) Lateral S/D scaling reduces Ron and improves fT. But scaled Lgd causes short-channel effect and reduce BV and fmax. Independently control of Lgs and Lgd by different sidewall thickness. BV=17V@Lg=20nm, Lgs=30nm, Lgd=80nm (Ec=2.13MV/cm) Ron=0.34(Ω-mm), gm~1.5S/mm fT=310GHz, fmax=582GHz@Vgs=0V, Vds=4V Ka-band (32GHz) 1-stage MMIC PA with a 59% PAE was demonstrated. K. Shinohara et al., TED, 2013, 2012 & M. Micovic et al., IEDM 3.3, 2016 ns~1.2x1013(cm-2), µ~1200(cm2/Vs) for both E/D-mode. E-mode @Lg=20nm,Lsw=70nm, BV=14V (Ec=2MV/cm) fT=342GHz, fmax=518GHz@Vgs=0.25V, Vds=4V D-mode @Lg=20nm,Lsw=50nm, BV=14V (Ec=2MV/cm) Ron=0.26(Ω-mm), gm=1.36S/mm@Vgs=-0.8V, Vds=4V fT=454GHz, fmax=444GHz@Vgs=-0.75V, Vds=3V K. Shinohara et al., IEDM 27.2, 2012 & Y. Tang et al., EDL, 2015

Summary

Thank you for your attention

Supplementary To boost fT: Reduce L, increase VGS-VT and mobility       To boost fT: Reduce L, increase VGS-VT and mobility To boost efficiency: Eliminate surface/bulk traps (passivation, growth), decrease leakage.

http://www.ee.sc.edu/personal/faculty/simin/ELCT871/18%20AlGAN-GaN%20HEMTs.pdf