Matrix operators Rotation Aa x --> x' Aa y --> y' z y y' Aa

Slides:



Advertisements
Similar presentations
Reciprocal lattice How to construct reciprocal lattice
Advertisements

VI. Reciprocal lattice 6-1. Definition of reciprocal lattice from a lattice with periodicities in real space Remind what we have learned in chapter.
Texture Components and Euler Angles: part 2 13th January 05
University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2005 Tamara Munzner Transformations II Week.
Computer Graphics (Fall 2008) COMS 4160, Lecture 3: Transformations 1
Texture Components and Euler Angles: part 2 June 2007
Lesson 4 Review of Vectors and Matrices. Vectors A vector is normally expressed as or in terms of unit vectors likewise.
The linear algebra of Canadarm
1 Matrix Math ©Anthony Steed Overview n To revise Vectors Matrices n New stuff Homogenous co-ordinates 3D transformations as matrices.
Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 3: Transformations 1
Part7: Geometric Transformations
4.5 Solving Systems using Matrix Equations and Inverses.
CSE 681 Review: Transformations. CSE 681 Transformations Modeling transformations build complex models by positioning (transforming) simple components.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 : “shiv rpi” Linear Algebra A gentle introduction Linear Algebra has become as basic and as applicable.
4.5 Solving Systems using Matrix Equations and Inverses OBJ: To solve systems of linear equations using inverse matrices & use systems of linear equations.
 1 is the multiplicative identify for real #’s : 1· a=a and a· 1 = a  For matrices n X n, the identity matrix has 1’s on its main diagonals and 0’s.
Inverse and Identity Matrices Can only be used for square matrices. (2x2, 3x3, etc.)
Have we ever seen this phenomenon before? Let’s do some quick multiplication…
Sect. 4.2: Orthogonal Transformations
General Introduction to Symmetry in Crystallography A. Daoud-Aladine (ISIS)
Multiplicative inverse and solving matrix equations
1 Graphics CSCI 343, Fall 2015 Lecture 10 Coordinate Transformations.
Transformations CS 445/645 Introduction to Computer Graphics David Luebke, Spring 2003.
Crystallography lv.
ESO 214: Nature and Properties of Materials
4.7 Solving Systems using Matrix Equations and Inverses
Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 3: Transformations 1
Honors Geometry.  We learned how to set up a polygon / vertex matrix  We learned how to add matrices  We learned how to multiply matrices.
IPCMS-GEMME, BP 43, 23 rue du Loess, Strasbourg Cedex 2
Coordinate Systems and Transformations
III- 1 III 3D Transformation Homogeneous Coordinates The three dimensional point (x, y, z) is represented by the homogeneous coordinate (x, y, z, 1) In.
3.8B Solving Systems using Matrix Equations and Inverses.
Sect. 4.5: Cayley-Klein Parameters 3 independent quantities are needed to specify a rigid body orientation. Most often, we choose them to be the Euler.
Objectives Introduce standard transformations Introduce standard transformations Derive homogeneous coordinate transformation matrices Derive homogeneous.
CPT450 – Computer Graphics
CSE 167 [Win 17], Lecture 3: Transformations 1 Ravi Ramamoorthi
Mathematics for Computer Graphics
Transforms.
3D Kinematics Consists of two parts
3D Geometric Transformation
Problem 1.5: For this problem, we need to figure out the length of the blue segment shown in the figure. This can be solved easily using similar triangles.
Computer Graphics CC416 Week 15 3D Graphics.
Review: Transformations
3D Transformation.
Crystallographic Points, Directions, and Planes.
Review: Transformations
2D Transformations y y x x y x.
Warm-Up BC 3. |A|.
We live in a Three Dimensional World
Transformations 3 University of British Columbia
Transformations in 3 Dimensions CS /28/2018 Dr. Mark L. Hornick
Crystallographic Points, Directions, and Planes.
Graphs.
- I, n i i. JJ- l__!l__!
Multiplicative Inverses of Matrices and Matrix Equations
Rigid Body Transformations
Transformation Operators
Why Study Solid State Physics?
9.3 Perform Reflections Mrs. vazquez Geometry.
Derivation of the 2D Rotation Matrix
Bellwork 1) Multiply. 3) Find the determinant. 2) Multiply.
Double-Angle, Half-Angle Formulas
Linear Algebra A gentle introduction
Applications in Coordinate Geometry
William Hallowes Miller
  Rotations Y Changes in frame of reference or point of view
Rigid Body Transformations
Robotics 1 Copyright Martin P. Aalund, Ph.D.
Eigenvalues and Eigenvectors
Screw Rotation and Other Rotational Forms
Presentation transcript:

Matrix operators Rotation Aa x --> x' Aa y --> y' z y y' Aa cos a cos a a x' y' sin a a y a x - sin a x a x' Aa x --> x' Aa y --> y'

Matrix operators Rotation Aa x --> x' Aa y --> y' z y y' Aa cos a cos a a x' y' sin a a y a x - sin a x a x' Aa x --> x' Aa y --> y' x' = x cos a + y sin a y' = - x sin a + y cos a z' = z

Matrix operators Rotation x' = x cos a + y sin a x' cos a sin a 0 x z y y' Aa cos a cos a a x' y' sin a a y a x - sin a x a x' x' = x cos a + y sin a x' cos a sin a 0 x y' = - x sin a + y cos a y' = – sin a cos a 0 y z' = z z' 0 0 1 z X' = Aa X

Matrix operators Rotation of a point y x’ y’ z’ x y z a x Rotation of point same as x' cos a – sin a 0 x leaving point fixed & y' = sin a cos a 0 y rotating coord. system z' 0 0 1 z through angle –a X' = Aa X = Aa X T -1

Matrix operators General transformation matrix r = (r i)i + (r j)j + (r k)k r = (r i')i' + (r j')j' + (r k')k' If r = i', j', k', in turn: i' = (i' i)i + (i' j)j + (i' k)k j'= (j' i)i + (j' j)j + (j' k)k k'= (k' i)i + (k' j)j + (k' k)k x3’ x’ y’ z’ x y z r x2’ x2 x1 x1’

Matrix operators General transformation matrix If r = i', j', k', in turn: i' = (i' i)i + (i' j)j + (i' k)k j'= (j' i)i + (j' j)j + (j' k)k k'= (k' i)i + (k' j)j + (k' k)k (i' i), (i' j), ….. are direction cosines lmn = cos qmn, and: i' l11 l12 l13 i j' = l21 l22 l23 j k' l31 l32 l33 k x3’ x’ y’ z’ x y z r x2’ x2 x1 x1’

Matrix operators General transformation matrix (i' i), (i' j), ….. are direction cosines lmn = cos qmn, and: i' l11 l12 l13 i j' = l21 l22 l23 j k' l31 l32 l33 k x l11 l12 l13 x' x' l11 l21 l31 x y = l21 l22 l23 y' y' = l12 l22 l32 y z l31 l32 l33 z' z' l13 l23 l33 z

Matrix operators General transformation matrix Transformation matrix is then product of 3 matrices: P = A-1R A where X' = P X X3 ––> r = A 2. rotate a about r = R 3. r ––> X3' = A-1 x3 x3’ x’ y’ z’ x y z r x2’ x2 x1 x1’

Matrix operators General transformation matrix Transformation matrix is then product of 3 matrices: P = A-1R A where X' = P X P = l11 l21 l31 cos a sin a 0 l11 l12 l13 l12 l22 l32 -sin a cos a 0 l21 l22 l23 l13 l23 l33 0 0 1 l31 l32 l33

Matrix operators General transformation matrix Transformation matrix is then product of 3 matrices: P = A-1R A where X' = P X P = l11 l21 l31 cos a sin a 0 l11 l12 l13 l12 l22 l32 -sin a cos a 0 l21 l22 l23 l13 l23 l33 0 0 1 l31 l32 l33 Multiplying matrices, finally get P = l31(1 - cos a) + cos a l32l31 (1 - cos a) + l33 sin a l31l33 (1 - cos a) - l32 sin a l32l31 (1 - cos a) - l33 sin a l32(1 - cos a) + cos a l32l33 (1 - cos a) + l31 sin a l33l31 (1 - cos a) + l32 sin a l32l33 (1 - cos a) - l31 sin a l33(1 - cos a) + cos a 2 2 2

Matrix operators General transformation matrix Transformation matrix is then product of 3 matrices: P = A-1R A where X' = P X P = l31(1 - cos a) + cos a l32l31 (1 - cos a) + l33 sin a l31l33 (1 - cos a) - l32 sin a l32l31 (1 - cos a) - l33 sin a l32(1 - cos a) + cos a l32l33 (1 - cos a) + l31 sin a l33l31 (1 - cos a) + l32 sin a l32l33 (1 - cos a) - l31 sin a l33(1 - cos a) + cos a This matrix for rotation of basis vectors. More interesting to rotate points (xyz). Use inverse (transpose) matrix: P-1 = l31(1 - cos a) + cos a l32l31 (1 - cos a) - l33 sin a l33l31 (1 - cos a) + l32 sin a l32l31 (1 - cos a) + l33 sin a l32(1 - cos a) + cos a l32l33 (1 - cos a) - l31 sin a l31l33 (1 - cos a) - l32 sin a l 32l33 (1 - cos a) + l31 sin a l33(1 - cos a) + cos a 2 2 2 2 2 2

Matrix operators General transformation matrix Transformation matrix is then product of 3 matrices: P = A-1R A where X' = P X P-1 = l31(1 - cos a) + cos a l32l31 (1 - cos a) - l33 sin a l33l31 (1 - cos a) + l32 sin a l32l31 (1 - cos a) + l33 sin a l32(1 - cos a) + cos a l32l33 (1 - cos a) - l31 sin a l31l33 (1 - cos a) - l32 sin a l 32l33 (1 - cos a) + l31 sin a l33(1 - cos a) + cos a Ex: r along z l31 = l32 = 0 l33 = 1 P-1 = cos a – sin a 0 sin a cos a 0 0 0 1 2 2 2

Matrix operators General transformation matrix Transformation matrix is then product of 3 matrices: P = A-1R A where X' = P X P-1 = l31(1 - cos a) + cos a l32l31 (1 - cos a) - l33 sin a l33l31 (1 - cos a) + l32 sin a l32l31 (1 - cos a) + l33 sin a l32(1 - cos a) + cos a l32l33 (1 - cos a) - l31 sin a l31l33 (1 - cos a) - l32 sin a l 32l33 (1 - cos a) + l31 sin a l33(1 - cos a) + cos a Ex: C4 along [100] l33 = l32 = 0 l31 = 1 a = π/2 cos a = 0 sin a = 1 P-1 = 1(1-0)+0 0(1-0)-0(1) 0(1-0)+0(1) = 1 0 0 0(1-0)+0(1) 0(1-0)+0 0(1-0)-1(1) 0 0 -1 0(1-0)+0(1) 0(1-0)+1(1) 0(1-0)+0 0 1 0 (x', y', z') = (x, -z, y) 2 2 2

Matrix operators General transformation matrix Transformation matrix is then product of 3 matrices: P = A-1R A where X' = P X P-1 = l31(1 - cos a) + cos a l32l31 (1 - cos a) - l33 sin a l33l31 (1 - cos a) + l32 sin a l32l31 (1 - cos a) + l33 sin a l32(1 - cos a) + cos a l32l33 (1 - cos a) - l31 sin a l31l33 (1 - cos a) - l32 sin a l 32l33 (1 - cos a) + l31 sin a l33(1 - cos a) + cos a Ex: C3 along [111] l33 = l32 = l31 = 1/ 3 a = 2π/3 cos a = -1/2 sin a = 3/2 P-1 = 1/3(3/2)-1/2 1/3(3/2)-1/2 1/3(3/2)+1/2 = 0 0 1 1/3(3/2)+1/2 1/3(3/2)-1/2 1/3(3/2)-1/2) 1 0 0 1/3(3/2)-1/2 1/3(3/2)+1/2 1/3(3/2)-1/2 0 1 0 (x', y', z') = (z, x, y) 2 2 2

Matrix operators Unit cell transformations Transformation of unit cell transforms: (hkl) reciprocal cell basis vectors zone axes [uvw] atom position coordinates

Matrix operators Unit cell transformations Transformation of unit cell transforms: (hkl) reciprocal cell basis vectors zone axes [uvw] atom position coordinates Suppose a2 = s11a1+ s12b1 + s13c1 b2 = s21a1+ s22b1 + s23c1 c2 = s31a1+ s32b1 + s33c1 sij also transforms (hkl) to the new basis a2, b2, c2 But a2i* = ((sij)-1)T a1i* <–– [uvw] & (xyz) transform the same way

Matrix operators Unit cell transformations a2 = s11 s12 s13 a1 b2 s21 s22 s23 b1 c2 s31 s32 s33 c1 Ex: F cubic ––> P cell aP = 1/2 1/2 0 aF bP 0 1/2 1/2 bF cP 1/2 0 1/2 cF cF bP cP bF aP aF

Matrix operators Unit cell transformations a2 = s11 s12 s13 a1 b2 s21 s22 s23 b1 c2 s31 s32 s33 c1 Ex: F cubic ––> P cell aP = 1/2 1/2 0 aF bP 0 1/2 1/2 bF cP 1/2 0 1/2 cF Typical F cubic diffraction pattern: (111), (200), (220) ….. (111), (101), (211) for P cell cF bP cP bF aP aF