The status of the search for a nEDM and the new UCN sources

Slides:



Advertisements
Similar presentations
Mesure du moment électrique dipolaire du neutron Oscar Naviliat-Cuncic LPC-Caen et Université de Caen Basse-Normandie Institut de Physique Nucléaire d'Orsay.
Advertisements

Andreas Knecht1ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 A Gravitational Spectrometer for Ultracold Neutrons Andreas Knecht Paul Scherrer Institut.
Electric dipole moment searches
IKON7, Instrument clip session, September 2014, ESS Headquarters and Medicon Village, Lund, Sweden A cold neutron beamline for Particle
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
Philip Harris University of Sussex (for the EDM Collaboration) The Neutron EDM Experiments at the ILL.
The cryogenic neutron EDM experiment at ILL and the result of the room temperature experiment James Karamath University of Sussex.
B. Lee Roberts, HIFW04, Isola d’Elba, 6 June p. 1/39 Future Muon Dipole Moment Measurements at a high intensity muon source B. Lee Roberts Department.
Lepton Moments 2014 Craigville 07/22/2014 P. Schmidt-Wellenburg PSI Searching for the electric dipole moment of the neutron.
Study of the Time-Reversal Violation with neutrons
1 Neutron Electric Dipole Moment Experiment Jen-Chieh Peng International Workshop on “High Energy Physics in the LHC Era” Valparaiso, Chile, December 11-15,
P. Schmidt-Wellenburg Time and Matter, Montenegro, 06. Oct Slide 1 Improved search for the neutron electric dipole moment Philipp Schmidt –Wellenburg.
Searching for a nEDM at PSI
UCN optics, polarization foils and spinflipper for the munich nEDM approach Thorsten Lauer.
Electric Dipole Moment of Neutron and Neutrinos
NEUTRON EDM Philip Harris, on behalf of the CryoEDM collaboration: Rutherford Appleton Laboratory University of Oxford University of Sussex ILL University.
1/30Peter Fierlinger FERMILAB Diamond-like Carbon for Ultra-cold Neutrons Peter Fierlinger.
Villigen, Status of the nEDM measurement Progress 2011 PSI Proposal R–05–03.1 Philipp Schmidt-Wellenburg on behalf of the nEDM collaboration.
Magnetic/Electric Fields for KEK-RCNP EDM Experiment K. Matsuta(Osaka), Y. Masuda(KEK), Y. Watanabe(KEK), S.C. Jeong(KEK), K. Hatanaka(RCNP), R. Matsumiya.
The ISIS strong focusing synchrotron also at the Rutherford Appleton Laboratory. Note that ISIS occupies the same hall as NIMROD used to and re- uses some.
Fundamental Physics With Cold and Ultra-cold Neutrons Albert Young North Carolina State University.
Ultrahigh precision observation of nuclear spin precession and application to EDM measurement T. Inoue, T. Furukawa, H. Hayashi, M. Tsuchiya, T. Nanao,
1 Preparation for the 3 He Injection Test 11/2007 MIT/BATES D. Dutta*, H. Gao, M. Busch, Q. Ye, X. Qian, W. Zheng, X. Zhu ( Duke University) ASU, BU, Caltech,
The nEDM experiment at PSI 1 Guillaume Pignol (LPSC Grenoble) IN2P3 scientific council, 24/10/2013.
ER01/JA01, th Session of the JINR Scientific Council Dubna, March 27, 2006 Participation of JINR scientists in joint experiments at Paul Scherrer.
Ultracold neutrons and neutron decay Oliver Zimmer ILL Grenoble / TU München 19th Int. IUPAP Conf. On Few-Body Problems in Physics Bonn, 14 July 2008.
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
Mitglied der Helmholtz-Gemeinschaft July 2015 | Hans Ströher (Forschungszentrum Jülich) EPS Conference on High Energy Physics, July 2015, Vienna.
Normalization of the NPDGamma Experimental Data F. Simmons, C. Crawford University of Kentucky, for the NPDGamma collaboration Background: NPDγ Experiment.
Beam Polarimetry Matthew Musgrave NPDGamma Collaboration Meeting Oak Ridge National Laboratory Oct. 15, 2010.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
 Lori Rebenitsch University of Winnipeg June 17,
UCN magnetic storage and neutron lifetime V.F.Ezhov Petersburg Nuclear Physics Institute, Gatchina, Russia. (ITEP )
DOE 2/11/05 #1 EDM R&D Progress Steve Lamoreaux, Los Alamos Co-spokesperson for the EDM Project for presentation to The Department of Energy Cost & Schedule.
June 2010 The search for permanent electric dipole moments Klaus Kirch ETH Zürich & PSI Villigen CP violation and electric dipole.
CryoEDM – A Cryogenic Neutron-EDM Experiment Collaboration: Sussex University, RAL, ILL, Kure University, Oxford University Hans Kraus … but before: some.
Electric-Dipole Moment Searches * Philip Harris *(mainly neutron)
, Providence RI Paul Scherrer Institut Philipp Schmidt-Wellenburg on behalf of the nEDM collaboration An improved search of the nEDM.
1 How Can We Get More Neutrons? Upgrade Paths for the EDM Geoff Greene University of Tennessee /Oak Ridge National Laboratory Oct 2006.
Collab_NSAC 4/2/03 #1 EDMEDM Martin Cooper, Los Alamos Co-spokesperson for the EDM Project for presentation to EDM Collaboration Meeting Los Alamos, NM.
Progress in the construction of the MICE cooling channel and first measurements Adam Dobbs, EPS-HEP, 23 rd July 2011.
Electric dipole moment searches E.A. Hinds Birmingham 11 th July 2011 Centre for Cold Matter Imperial College London.
Contents Introduction (motivation of precise measurements of neutron lifetime, history of experimental accuracy improvement). a. Result of neutron lifetime.
EDMEDM C&S Review 2/11/05 #1 Martin Cooper, Los Alamos Co-spokesperson for the EDM Project for presentation to LANL Cost and Schedule Review Committee.
The cryogenic neutron EDM experiment at ILL Technical challenges and solutions James Karamath University of Sussex.
Mesure du moment électrique dipolaire du neutron Oscar Naviliat-Cuncic LPC-Caen et Université de Caen Basse-Normandie Journée de la division Champs et.
Moving the NPDGamma Experiment to the SNS FnPB Christopher Crawford University of Kentucky overview of NPDGamma transition to the SNS expected.
Assembly 12/14/06 #1 Assembly and Commissioning Paul Huffman.
Neutron and electron EDMs PPAP meeting, Birmingham, 18 th September 2012 Mike Tarbutt Centre for Cold Matter, Imperial College London.
Derek F. Jackson Kimball. Collaboration Dmitry Budker, Arne Wickenbrock, John Blanchard, Samer Afach, Nathan Leefer, Lykourgas Bougas, Dionysis Antypas.
INSTITUT MAX VON LAUE - PAUL LANGEVIN Measurement of parity-violating asymmetries in the reactions of light nuclei with polarized neutrons ( 6.
Philip Harris EDM Experiments PPAP, Birmingham 15/7/09.
Yannis K. Semertzidis Brookhaven National Laboratory New opportunities at CERN CERN, 12 May 2009 Storage Ring EDM Experiments The storage ring method can.
Ultracold Neutrons at TRIUMF Jeff Martin The University of Winnipeg Outline: ● UCN Production and source ● Physics experiments at the UCN source: neutron.
– + + – Search for the μEDM using a compact storage ring A. Adelmann 1, K. Kirch 1, C.J.G. Onderwater 2, T. Schietinger 1, A. Streun 1 1 Paul Scherrer.
Latest results from the superfluid-helium UCN source SUN2 at ILL
ICNPF 2013, Crete, Aug. 28 – Sept. 5, 2013 JEDI - The Jülich Electric Dipole Moment Investigations in Storage Rings | H. Ströher.
Neutron and electron electric dipole moments
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
A new simultaneous spin analyser (USSA) for the PSI nEDM experiment
Geol 319: Important Dates Friday, Sept 28th – class cancelled
University of Manchester
Electric Dipole Moments: Searches at Storage Rings
Accelerator R&D and Particle Physics at PSI
EDM Experiments: UK interests
Upgrade of LXe gamma-ray detector in MEG experiment
Electric Dipole Moments: Searches at Storage Rings
Big Gravitational Trap for neutron lifetime measurements
neutron lifetime experiments
electric dipole moments (EDM)
Presentation transcript:

The status of the search for a nEDM and the new UCN sources Andreas Knecht Paul Scherrer Institut & Universität Zürich Currently at: ETH Zürich

Outline Neutron Electric Dipole Moment New UCN Sources nEDM Experiments: CryoEDM Experiment @ ILL nEDM Experiment @ SNS nEDM Experiment @ PSI

The Baryon Asymmetry of the Universe Observed:* nB/ng = 6 x 10-10 SM expectation:** nB/ng ~ 10-18 Sakharov 1967: B-violation C, CP-violation thermal non-equilibrium JETP Lett. 5, 24 (1967) * WMAP data: Astrophys. J. Supp. 170, 377 (2007) ** Riotto and Trodden: Ann. Rev. Nucl. Part. Sc. 49, 35 (1999)

Electric Dipole Moment Non-zero, permanent EDM violates both parity P and time reversal T → Violates CP → Understand mechanism of CP violation

nEDM History Current best limit: dn < 2.9×10-26 ecm PRL 97, 131801 (2006)

Measurement Principle An EDM couples to an electric field as a MDM couples to a magnetic field: Measure EDM from the difference of precession frequencies for parallel/anti-parallel fields: B E

Ultracold Neutrons Gravity Material polarized UCN 1.5 T Magnet Neutrons with kinetic energies of ~ 100 neV (~ 5 m/s) Interactions: Gravitational: Vg = 100 neV/m Magnetic: Vm = 60 neV/T Strong: VF up to 350 neV Weak: n → p + e + ν Material polarized UCN 1.5 T Magnet

nEDM Apparatus Room temperature experiment Ramsey technique of separated oscillatory fields Mercury co-magnetometer to monitor magnetic field

Outline Neutron Electric Dipole Moment New UCN Sources nEDM Experiments: CryoEDM Experiment @ ILL nEDM Experiment @ SNS nEDM Experiment @ PSI

Need for Neutrons! Detected count rates: n beam ORNL: ~102 n/s n beam ILL: ~106 n/s Incoming flux: UCN source PNPI: ~104 UCN/s UCN source ILL: ~105 UCN/s UCN source PSI: ~107 UCN/s

Superthermal UCN Production Golub and Pendlebury, PLA 62, 337 (1977): superfluid 4He Golub and Böning, ZPB 51, 95 (1983): solid D2 R [cm-1] tUCN [s] D2 10-8 0.03…0.1 4He 1..3 x 10-9 10…1000 rUCN = FCN R tUCN UCN CN Detailed balance: upscattering cross section = exp(-DE/kT) x downscattering Cooling machine = phonon pump

UCN sources Existing: ILL, France liquid D2, turbine ρ ~ 10 UCN/cm3 LANL, USA solid D2 ρ ~ 10 UCN/cm3 Mainz, Germany solid D2 ρ ~ 1 UCN/cm3 NCSU, USA solid D2 ρ ~ 10 UCN/cm3 2010: PSI, Switzerland solid D2 ρ ~ 1000 UCN/cm3 ≥2010: ILL, France superfluid 4He ρ ~ 1000 UCN/cm3 ≥2012: FRM-II, Germany solid D2 ρ ~ 3000 UCN/cm3 PNPI, Russia superfluid 4He ρ ~ 10‘000 UCN/cm3 ≥2013: TRIUMF, Canada superfluid 4He ρ ~ 50‘000 UCN/cm3

The PSI UCN source commissioning started fall 2009 2 m3 volume storage trap r ~ 2000 cm-3 UCN guide rexp> 1000 cm-3 vacuum compare with typical 10 cm-3 at ILL The PSI UCN source commissioning started fall 2009 30 liters solid D2 rUCN~6000 cm-3 p-beam 1.3 MW 3.6 m3 D2O high power (1.3 MW) low duty cycle (1%) multi-user capability

UCN Source Proton accelerator 590 MeV, 2.2 mA Area West Area South

UCN Source

First Proton Pulse on Target December 15, 2009 Signal distribution on oscilloscope monitoring fast neutrons 100 A beam current / 5 ms pulse length start of pulse before pulse (background) 2 s after pulse during pulse B.Lauss / L.Goeltl Dec.15, 2009

Outline Neutron Electric Dipole Moment New UCN Sources nEDM Experiments: CryoEDM Experiment @ ILL nEDM Experiment @ SNS nEDM Experiment @ PSI

Current & Proposed nEDM Experiments CryoEDM experiment @ ILL (next slides, courtesy of P. Harris) Sussex – Rutherford – Oxford – ILL – Kure SNS EDM @ SNS (next slides, courtesy of B. Filippone) ASU – Berkeley – Brown – BU – Caltech – Duke – Indiana – Kentucky – LANL – Maryland – MIT – NCSU – ORNL – HMI – SFU – Tenn. – UIUC – Miss.State – Yale nEDM experiment @ PSI (next slides) PTB – LPC – JUC – HNI – JINR – FRAP – ECU – LPSC – BMZ – KUL – GUM – IKC – TUM – PSI – ETHZ nEDM experiment @ ILL/PNPI PNPI – ILL → currently running at ILL, needs new UCN source for competitive result nEDM experiment @ TRIUMF KEK – TIT – Osaka – RCNP – Winnipeg → ≥ 2013, LOI/proposal for TRIUMF expected in 2010/2011

Outline Neutron Electric Dipole Moment New UCN Sources nEDM Experiments: CryoEDM Experiment @ ILL nEDM Experiment @ SNS nEDM Experiment @ PSI

CryoEDM overview Neutron beam input Transfer section Cryogenic Ramsey chamber

Status & Plans C.f. room-temp vacuum, liquid He offers: More neutrons N Higher electric field E Better polarisation a Longer NMR coherence time T 100-fold improvement in sensitivity Neutron production and detection in LHe works well. Commissioning underway – key components shown to work (but need improvement) Cryogenics are old and have caused numerous setbacks B shielding not yet optimal, and electric field needs to increase; but we know how First results anticipated ~2011-2 at ~3x10-27 ecm level 2012-13: expt due to move to 6x brighter beamline Various upgrades proposed for implementation at that time – e.g. 4-cell Ramsey chamber, improved materials Anticipated ultimate sensitivity ~few 10-28 ecm

Outline Neutron Electric Dipole Moment New UCN Sources nEDM Experiments: CryoEDM Experiment @ ILL nEDM Experiment @ SNS nEDM Experiment @ PSI

New EDM Experiment @ SNS (ASU – Berkeley – Brown – BU – Caltech – Duke – Indiana – Kentucky – LANL – Maryland – MIT – NCSU – ORNL – HMI – SFU – Tenn. –UIUC – Miss.State – Yale) (AMO – HEP – NP – Low Temp expertise) Superfluid He UCN converter with high E-field ~2 orders-of-magnitude improvement possible Concept: Golub & Lamoreaux PHYSICS REPORTS 237,1,1994.

Status of SNS nEDM nEDM building at SNS recently completed Completing critical R&D High Voltage test at Low Temperature in LHe Project Design will be completed 2010 Cost and Schedule also determined in 2010 Construction time ~ 5 years

Outline Neutron Electric Dipole Moment New UCN Sources nEDM Experiments: CryoEDM Experiment @ ILL nEDM Experiment @ SNS nEDM Experiment @ PSI

nEDM Strategy Phase I: Phase II: Phase III: Operate and improve Sussex-RAL-ILL apparatus at ILL R&D for n2EDM Move to PSI March 2009 Phase II: Operate Sussex-RAL-ILL apparatus at PSI (2009-2012) Sensitivity goal: 5x10-27 ecm Construction and setup of n2EDM Phase III: Operate n2EDM (2012-2015) Sensitivity goal: 5x10-28 ecm

Phase I: Sussex-RAL-ILL Apparatus at ILL

Phase II: Sussex-RAL-ILL Apparatus at PSI nEDM apparatus Climatization system Compensation coil system SC polarizer

Statistical Sensitivity α = 0.75 E = 12 kV/cm T = 150 s N = 350′000 = 4 x 10-25 ecm / cycle 400 s = 3 x 10-26 ecm / day = 3 x 10-27 ecm / year 200 nights After 2 years, statistics only dn = 0: |dn| < 4 x 10-27 ecm (95% C.L.) Obtain same figures with E=10kV/cm, T=130s, 200s cycle

Systematics After 2 years, statistics & systematics Effect Shift (see Ref.) [10-27 ecm] σ (see Ref.) σ (at PSI) Door cavity dipole -5.6 2.00 0.10 Other dipole fields 0.0 6.00 0.40 Quadrupole difference -1.3 0.60 vE translational 0.03 0.04 vE rotational 1.00 Second-order vE 0.02 0.01 Hg light shift (geo phase) 3.5 0.80 Hg light shift (direct) 0.20 Uncompensated B drift 2.40 0.90 Hg atom EDM -0.4 0.30 0.06 Elastic forces Leakage currents ac fields Total -3.8 7.19 1.37 After 2 years, statistics & systematics dn = 0: |dn| < 5 x 10-27 ecm (95% C.L.) or, e.g., dn = 1.3 x 10-26 ecm (5σ) PRL 97, 131801 (2006)

Conclusions Several new UCN sources are being built worldwide for fundamental physics experiments New sources will allow to push the statistical sensitivity in nEDM experiments by two orders of magnitude Improved results of various nEDM experiments can be expected in the coming years

Backup

PSI UCN Source

Proton Accelerator Facility @ PSI SINQ: thermal and cold neutron beams Target stations for pion and muon production Proton accelerator 590 MeV, 2.2 mA Proton therapy UCN source

Storage Volume and Shutters

CN Energy Dependent UCN Production 4He D2 C.A. Baker et al., PLA 308, 67 (2003) F. Atchison et al., PRL 99, 262502 (2007)

nEDM Experiment

Strong CP Problem Why so small? CP violating term in the QCD Lagrangian (θ-term): QCD Predictions nEDM: |dn| ~ θ·10-16 ecm Current limit on dn → θ < 10-10 Why so small?

SUSY CP Problem Why (so) small? Larger CP violation in supersymmetric models than in the Standard Model → Simplified model: Limits on different electric dipole moments constrain SUSY phases already now Why (so) small? Ann. Phys. 318, 119 (2005)

The Neutron EDM Collaboration

Ramsey resonance L w = B1 + B0 ±E Polarized neutrons in a homogeneous static field (+z-direction, spin up). Linear oscillating field turning the spin in xy-plane. Free precession time (~100s) with μn and dn coupling to static B and E field. Linear oscillating field turning the spin in -z-direction (spin down). B0 ±E B0 ±E B1 + B0 ±E

nEDM w = + Mercury used to monitor B-field fluctuations via ω=γB. Frequency visible as oscillating signal on PMT.

Hg magnetometer Direct Measurement of ωHg! Assuming the chamber is Hg tight, the decrease of as with time (Hg relaxation time) is due to the loss of polararization (wall collisions). Amount of Hg (A) depends on both the temperature of the HgO source and of the length of the cycle.

The Neutron EDM Collaboration Physikalisch Technische Bundesanstalt, Berlin Laboratoire de Physique Corpusculaire, Caen Institute of Physics, Jagiellonian University, Cracow Henryk Niedwodniczanski Inst. Of Nucl. Physics, Cracow Joint Institute of Nuclear Reasearch, Dubna Département de physique, Université de Fribourg, Fribourg Excellence Cluster Universe, Garching Laboratoire de Physique Subatomique et de Cosmologie, Grenoble Biomagnetisches Zentrum, Jena Katholieke Universiteit, Leuven Inst. für Kernchemie, Johannes-Gutenberg-Universität, Mainz Inst. für Physik, Johannes-Gutenberg-Universität, Mainz Technische Universität, München Paul Scherrer Institut, Villigen Eidgenössische Technische Hochschule, Zürich M. Burghoff, S. Knappe-Grüneberg, A. Schnabel, L. Trahms G. Ban, Th. Lefort, Y. Lemiere, O. Naviliat-Cuncic, E. Pierre1, G. Quéméner, G. Rogel2 K. Bodek, St. Kistryn, J. Zejma A. Kozela N. Khomutov P. Knowles, A.S. Pazgalev, A. Weis P. Fierlinger, B. Franke1, M. Horras1, F. Kuchler, G. Pignol D. Rebreyend G. Bison S. Roccia, N. Severijns, N.N. G. Hampel, J.V. Kratz, T. Lauer, C. Plonka-Spehr, N. Wiehl, J. Zenner1 W. Heil, A. Kraft, Yu. Sobolev3 I. Altarev, E. Gutsmiedl, S. Paul, R. Stoepler Z. Chowdhuri, M. Daum, M. Fertl, R. Henneck, A. Knecht4, B. Lauss, A. Mtchedlishvili, G. Petzoldt, P. Schmidt-Wellenburg, G. Zsigmond K. Kirch1, N.N. also at: 1Paul Scherrer Institut, 2ILL Grenoble, 3PNPI Gatchina, 4University of Zürich

R&D during Phase I Addition of Cs magnetometers Magnetic field diagnostics, field stabilisation Development of a new insulating UCN storage chamber: deuterated PS coated PS Potential: 162 neV (Quartz: 95 neV)

R&D during Phase I Fluxgate scans revealed large magnetic inhomogeneities Sources located and removed BZ 25 nT Capabilities to scan large parts at PTB Berlin using a SQUID array and inside the world’s best shielded room (106) Resolution: 10 pT

Phase III: n2EDM Double chamber system, vertical stack of cylindrical chambers Co-magnetometer (Hg, Xe?, He?) Cs magnetometer array (64, 128, ?) 2 large He-3 magnetometers with He-3 read-out by CsM B-field and gradient stabilization by CsM 5-layer mu-metal shield UCN polarized by SC polarizer UCN spin analysis above detector, eventually simultaneous analysis Flexible DAQ

Example: B drift Changes in B proportional to E will lead to false EDM signals: df = 3x10-26 ecm ΔB/(10 fT) Possible sources: sparks, magnetisation of mumetal 0.3 nT

Shutter Movement Change of shutter position → change of B-field n and Hg RF visible

B-field Sensitivity Statistical sensitivity: Sussex (nEDM NIMA, 2000): α = 0.5, T = 130 s, N = 13‘000 → σB = 0.7 pT We: α = 0.3, T = 150 s, N = 5‘000 (!) → σB = 1.7 pT or ~1.7 x 10-6 From data: < σ(fn) >/< fn > ≈ 10-6 < σ(fHg) >/< fHg > ≈ 7 x 10-8 (~ 70 fT) Normalising the neutron data with Hg reduces the deviations to the level of statistical fluctuations! The fluctuations seen are magnetic fluctuations, they are bigger the further away from the center

Cs Magnetometers Mechanical and optics for 25 sensors Prototype preamps work Ultimate sensitivity 10 fT/sqrt(Hz) 240 cells made and tested

Cs Magnetometers

Cs Magnetometers

Systematics

Geometric Phase Quantum mechanical system acquires additional phase due to geometrical properties of parameter space Classical analogon: Transport of vectors along a sphere

Systematics Sources of magnetic inhomogeneities: UCN moves around the trap with speed r  experiences oscillating fields  shift of resonant frequency (Ramsey-Bloch-Siegert shift): Expanding the square:  E0  E1  E2

Systematics Averaging over possible paths for the two regimes ωr < ω0 (neutrons) and ωr > ω0 (mercury): Mercury is used to correct for possible fluctuations of magnetic field (ratios of resonant frequencies)  false Hg-EDM is imparted onto the neutron measurement:

Dipole fields e.g. reduced dipole enhancement (1+R2/z2) PRA 73, 014101 (2006). Hg geo phase induced B up/down  different Ra shifts Reduce dipole contaminations to < 0.5 x 10-14 Tm3/m0  dfalse < 5 x 10-28 ecm

Quadrupole fields Bxy fields Quadrupole difference matters! dBz/dz gradient Quadrupole difference matters! With transverse CsM, extract changes in Bxy down to qR ~ 100 pT  dfalse < 6 x 10-28 ecm quadr. q(-x,y)

Uncompensated B-drift Measure HV correlated gradients top-bottom with CsM 10 fT difference (6 x 10-26 ecm) will be detected in one day and suppressed by a factor ~70 by normalizing with Hg  dfalse < 9 x 10-28 ecm

Neutron Lifetime

Neutron Lifetime Puzzle New improved neutron lifetime experiments must be of high priority: Aim at 0.1s precision ! neutron lifetime / s Various projects in preparation, emphasis on magnetic trapping permanent magnetic traps superconducting traps 890 870 Courtesy: R. Picker PDG: