Chapter 11 Hypothesis Testing II

Slides:



Advertisements
Similar presentations
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 10-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
Advertisements

Business and Economics 9th Edition
Statistics for Managers Using Microsoft Excel, 5e © 2008 Prentice-Hall, Inc.Chap 10-1 Statistics for Managers Using Microsoft® Excel 5th Edition Chapter.
Chapter 10 Two-Sample Tests
Chapter 8 Estimation: Additional Topics
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th Edition Chapter 10 Hypothesis Testing:
Chapter 10 Two-Sample Tests
Pengujian Hipotesis Beda Nilai Tengah Pertemuan 20 Matakuliah: I0134/Metode Statistika Tahun: 2007.
© 2002 Prentice-Hall, Inc.Chap 8-1 Statistics for Managers using Microsoft Excel 3 rd Edition Chapter 8 Two Sample Tests with Numerical Data.
Chap 11-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 11 Hypothesis Testing II Statistics for Business and Economics.
Chapter Goals After completing this chapter, you should be able to:
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 9-1 Introduction to Statistics Chapter 10 Estimation and Hypothesis.
Chapter Topics Comparing Two Independent Samples:
1/45 Chapter 11 Hypothesis Testing II EF 507 QUANTITATIVE METHODS FOR ECONOMICS AND FINANCE FALL 2008.
Chap 9-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 9 Estimation: Additional Topics Statistics for Business and Economics.
A Decision-Making Approach
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 10-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
© 2002 Prentice-Hall, Inc.Chap 8-1 Statistics for Managers using Microsoft Excel 3 rd Edition Kafla 8 Próf fyrir tvö úrtök (Ekki þýtt)
Chapter 11 Hypothesis Tests and Estimation for Population Variances
© 2004 Prentice-Hall, Inc.Chap 10-1 Basic Business Statistics (9 th Edition) Chapter 10 Two-Sample Tests with Numerical Data.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Two Sample Tests Statistics for Managers Using Microsoft.
Basic Business Statistics (9th Edition)
1/49 EF 507 QUANTITATIVE METHODS FOR ECONOMICS AND FINANCE FALL 2008 Chapter 9 Estimation: Additional Topics.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 10-1 Chapter 10 Two-Sample Tests Basic Business Statistics 10 th Edition.
Hypothesis Testing – Two Samples
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 11-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap th & 7 th Lesson Hypothesis Testing for Two Population Parameters.
Chapter 10 Two-Sample Tests and One-Way ANOVA
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 10-1 Chapter 2c Two-Sample Tests.
10-1 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall Chapter 10 Two-Sample Tests Statistics for Managers using Microsoft Excel 6 th.
Pengujian Hipotesis Dua Populasi By. Nurvita Arumsari, Ssi, MSi.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 10-1 Chapter 10 Two-Sample Tests and One-Way ANOVA Business Statistics, A First.
A Course In Business Statistics 4th © 2006 Prentice-Hall, Inc. Chap 9-1 A Course In Business Statistics 4 th Edition Chapter 9 Estimation and Hypothesis.
Industrial Statistics 2
Chap 9-1 Two-Sample Tests. Chap 9-2 Two Sample Tests Population Means, Independent Samples Means, Related Samples Population Variances Group 1 vs. independent.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap th Lesson Hypothesis Tests for One and Two Population Variances.
Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 8 th Edition Chapter 10 Hypothesis Testing:
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Two-Sample Tests Statistics for Managers Using Microsoft.
Chapter 10 Statistical Inferences Based on Two Samples Statistics for Business (Env) 1.
Chap 10-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 10 Hypothesis Tests for.
Business Statistics: A First Course (3rd Edition)
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 10-1 Chapter 10 Two-Sample Tests and One-Way ANOVA Business Statistics, A First.
Comparing Sample Means
Copyright © 2016, 2013, 2010 Pearson Education, Inc. Chapter 10, Slide 1 Two-Sample Tests and One-Way ANOVA Chapter 10.
AP Statistics. Chap 13-1 Chapter 13 Estimation and Hypothesis Testing for Two Population Parameters.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Prentice-Hall, Inc.Chap 10-1 Statistics for Managers Using Microsoft® Excel 5th Edition Chapter.
Lecture 8 Estimation and Hypothesis Testing for Two Population Parameters.
10-1 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall Chapter 10 Two-Sample Tests Statistics for Managers using Microsoft Excel 6 th.
8-1 Copyright © 2014, 2011, and 2008 Pearson Education, Inc.
Chapter 10 Hypothesis Testing
Chapter 9 Estimation: Additional Topics
Chapter 10 Two-Sample Tests and One-Way ANOVA.
Statistics for Managers using Microsoft Excel 3rd Edition
Chapter 10 Two Sample Tests
Comparing Two Proportions
Estimation & Hypothesis Testing for Two Population Parameters
Chapter 11 Hypothesis Testing II
Chapter 10 Two-Sample Tests.
Data Mining 2016/2017 Fall MIS 331 Chapter 2 Sampliing Distribution
Chapter 10 Two-Sample Tests and One-Way ANOVA.
Statistics for Business and Economics
Chapter 9 Hypothesis Testing.
Data Mining 2016/2017 Fall MIS 331 Chapter 2 Sampliing Distribution
Chapter 11 Hypothesis Tests and Estimation for Population Variances
Chapter 8 Estimation: Additional Topics
Chapter 10 Hypothesis Tests for One and Two Population Variances
Chapter 10 Two-Sample Tests
Chapter 9 Estimation: Additional Topics
Chapter 8 Estimation: Additional Topics
Presentation transcript:

Chapter 11 Hypothesis Testing II Statistics for Business and Economics 6th Edition Chapter 11 Hypothesis Testing II

Chapter Goals Setelah menyelesaikan bab ini, anda akan mampu : Melakukan uji hipotesis untuk perbedaan dua rata-rata populasi Data berpasangan Populasi Independen, variansi populasi diketahui Populasi Independen, variansi populasi tak diketahui Melakukan uji hipotesis dua proporsi (sampel besar ) Use the F table to find critical F values Complete an F test for the equality of two variances

Two Sample Tests Two Sample Tests Population Means, Matched Pairs Population Means, Independent Samples Population Proportions Population Variances Examples: Same group before vs. after treatment Group 1 vs. independent Group 2 Proportion 1 vs. Proportion 2 Variance 1 vs. Variance 2 (Note similarities to Chapter 9)

Matched Pairs Tests Means of 2 Related Populations di = xi - yi Paired or matched samples Repeated measures (before/after) Use difference between paired values: Compute the average and standard dev of di Assumptions: Both Populations Are Normally Distributed di = xi - yi

Test Statistic: Matched Pairs The test statistic for the mean difference is a t value, with n – 1 degrees of freedom: Where D0 = hypothesized mean difference sd = sample standard dev. of differences n = the sample size (number of pairs)

Decision Rules: Matched Pairs Paired Samples Lower-tail test: H0: μx – μy  0 H1: μx – μy < 0 Upper-tail test: H0: μx – μy ≤ 0 H1: μx – μy > 0 Two-tail test: H0: μx – μy = 0 H1: μx – μy ≠ 0 a a a/2 a/2 -ta ta -ta/2 ta/2 Reject H0 if t < -tn-1, a Reject H0 if t > tn-1, a Reject H0 if t < -tn-1 , a/2 or t > tn-1 , a/2 has n - 1 d.f. Where

Matched Pairs Example  d = = - 4.2 Assume you send your salespeople to a “customer service” training workshop. Has the training made a difference in the number of complaints? You collect the following data:  di d = Complaints: S.person Before (1) After (2) di 1 6 4 - 2 2 20 6 -14 3 3 2 - 1 4 0 0 0 5 4 0 - 4 -21 n = - 4.2

Critical Value = ± 4.604 d.f. = n - 1 = 4 Matched Pairs: Solution Has the training made a difference in the number of complaints? Reject Reject H0: μx – μy = 0 H1: μx – μy  0 /2 /2  = .01 d = - 4.2 - 4.604 4.604 - 1.66 Critical Value = ± 4.604 d.f. = n - 1 = 4 Decision: Do not reject H0 (t stat is not in the reject region) Test Statistic: Conclusion: There is not a significant change in the number of complaints.

Difference Between Two Means Tujuan: Menguji perbedaan dua rata-rata populasi independent, μx – μy Sumber data berbeda, pop 1 dan pop 2 Tidak berhubungan atau berpasangan Independen Sampel yang diambil dari satu populasi tidak berpengaruh terhadap sampel dari populasi lain

Difference Between Two Means Population means, independent samples σx2 and σy2 known Test statistic is a z value σx2 and σy2 unknown σx2 and σy2 assumed equal Test statistic is a a value from the Student’s t distribution σx2 and σy2 assumed unequal

Population means, independent samples σx2 and σy2 Known Population means, independent samples Assumptions: Samples are randomly and independently drawn both population distributions are normal Population variances are known * σx2 and σy2 known σx2 and σy2 unknown

Population means, independent samples σx2 and σy2 Known When σx2 and σy2 are known and both populations are normal, the variance of X – Y is Population means, independent samples * σx2 and σy2 known …and the statistic has a standard normal distribution σx2 and σy2 unknown

Hypothesis Tests for Two Population Means Two Population Means, Independent Samples Lower-tail test: H0: μx  μy H1: μx < μy i.e., H0: μx – μy  0 H1: μx – μy < 0 Upper-tail test: H0: μx ≤ μy H1: μx > μy i.e., H0: μx – μy ≤ 0 H1: μx – μy > 0 Two-tail test: H0: μx = μy H1: μx ≠ μy i.e., H0: μx – μy = 0 H1: μx – μy ≠ 0

Two Population Means, Independent Samples, Variances Known Decision Rules Two Population Means, Independent Samples, Variances Known Lower-tail test: H0: μx – μy  0 H1: μx – μy < 0 Upper-tail test: H0: μx – μy ≤ 0 H1: μx – μy > 0 Two-tail test: H0: μx – μy = 0 H1: μx – μy ≠ 0 a a a/2 a/2 -za za -za/2 za/2 Reject H0 if z < -za Reject H0 if z > za Reject H0 if z < -za/2 or z > za/2

σx2 and σy2 Unknown, Assumed Equal Assumptions: Samples are randomly and independently drawn Populations are normally distributed Population variances are unknown but assumed equal Population means, independent samples σx2 and σy2 known σx2 and σy2 unknown * σx2 and σy2 assumed equal σx2 and σy2 assumed unequal

σx2 and σy2 Unknown, Assumed Equal Test Hypotheses: The population variances are assumed equal, so use the two sample standard deviations and pool them to estimate σ use a t value with (nx + ny – 2) degrees of freedom Population means, independent samples σx2 and σy2 known σx2 and σy2 unknown * σx2 and σy2 assumed equal σx2 and σy2 assumed unequal

Test Statistic, σx2 and σy2 Unknown, Equal The test statistic for μx – μy is: σx2 and σy2 unknown * σx2 and σy2 assumed equal σx2 and σy2 assumed unequal Where t has (n1 + n2 – 2) d.f., and

σx2 and σy2 Unknown, Assumed Unequal Assumptions: Samples are randomly and independently drawn Populations are normally distributed Population variances are unknown and assumed unequal Population means, independent samples σx2 and σy2 known σx2 and σy2 unknown σx2 and σy2 assumed equal * σx2 and σy2 assumed unequal

σx2 and σy2 Unknown, Assumed Unequal Forming interval estimates: The population variances are assumed unequal, so a pooled variance is not appropriate use a t value with  degrees of freedom, where Population means, independent samples σx2 and σy2 known σx2 and σy2 unknown σx2 and σy2 assumed equal * σx2 and σy2 assumed unequal

Test Statistic, σx2 and σy2 Unknown, Unequal The test statistic for μx – μy is: σx2 and σy2 unknown σx2 and σy2 assumed equal * σx2 and σy2 assumed unequal Where t has  degrees of freedom:

Two Population Means, Independent Samples, Variances Unknown Decision Rules Two Population Means, Independent Samples, Variances Unknown Lower-tail test: H0: μx – μy  0 H1: μx – μy < 0 Upper-tail test: H0: μx – μy ≤ 0 H1: μx – μy > 0 Two-tail test: H0: μx – μy = 0 H1: μx – μy ≠ 0 a a a/2 a/2 -ta ta -ta/2 ta/2 Reject H0 if t < -tn-1, a Reject H0 if t > tn-1, a Reject H0 if t < -tn-1 , a/2 or t > tn-1 , a/2 Where t has n - 1 d.f.

Pooled Variance t Test: Example You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data: NYSE NASDAQ Number 21 25 Sample mean 3.27 2.53 Sample std dev 1.30 1.16 Assuming both populations are approximately normal with equal variances, is there a difference in average yield ( = 0.05)?

Calculating the Test Statistic The test statistic is:

Solution t Decision: Reject H0 at a = 0.05 Conclusion: H0: μ1 - μ2 = 0 i.e. (μ1 = μ2) H1: μ1 - μ2 ≠ 0 i.e. (μ1 ≠ μ2)  = 0.05 df = 21 + 25 - 2 = 44 Critical Values: t = ± 2.0154 Test Statistic: .025 .025 -2.0154 2.0154 t 2.040 Decision: Conclusion: Reject H0 at a = 0.05 There is evidence of a difference in means.

Two Population Proportions Goal: Test hypotheses for the difference between two population proportions, Px – Py Assumptions: Both sample sizes are large, nP(1 – P) > 9 Population proportions

Two Population Proportions The random variable is approximately normally distributed Population proportions

Test Statistic for Two Population Proportions The test statistic for H0: Px – Py = 0 is a z value: Population proportions Where Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Decision Rules: Proportions Population proportions Lower-tail test: H0: px – py  0 H1: px – py < 0 Upper-tail test: H0: px – py ≤ 0 H1: px – py > 0 Two-tail test: H0: px – py = 0 H1: px – py ≠ 0 a a a/2 a/2 -za za -za/2 za/2 Reject H0 if z < -za Reject H0 if z > za Reject H0 if z < -za/2 or z > za/2

Example: Two Population Proportions Is there a significant difference between the proportion of men and the proportion of women who will vote Yes on Proposition A? In a random sample, 36 of 72 men and 31 of 50 women indicated they would vote Yes Test at the .05 level of significance

Example: Two Population Proportions (continued) The hypothesis test is: H0: PM – PW = 0 (the two proportions are equal) H1: PM – PW ≠ 0 (there is a significant difference between proportions) The sample proportions are: Men: = 36/72 = .50 Women: = 31/50 = .62 The estimate for the common overall proportion is: Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Example: Two Population Proportions Reject H0 Reject H0 The test statistic for PM – PW = 0 is: .025 .025 -1.96 1.96 -1.31 Decision: Do not reject H0 Conclusion: There is not significant evidence of a difference between men and women in proportions who will vote yes. Critical Values = ±1.96 For  = .05

Hypothesis Tests for Two Variances Population Variances Goal: Test hypotheses about two population variances H0: σx2  σy2 H1: σx2 < σy2 Lower-tail test F test statistic H0: σx2 ≤ σy2 H1: σx2 > σy2 Upper-tail test H0: σx2 = σy2 H1: σx2 ≠ σy2 Two-tail test The two populations are assumed to be independent and normally distributed

Hypothesis Tests for Two Variances The random variable Tests for Two Population Variances F test statistic Has an F distribution with (nx – 1) numerator degrees of freedom and (ny – 1) denominator degrees of freedom Denote an F value with 1 numerator and 2 denominator degrees of freedom by

Test Statistic Tests for Two Population Variances The critical value for a hypothesis test about two population variances is F test statistic where F has (nx – 1) numerator degrees of freedom and (ny – 1) denominator degrees of freedom

Decision Rules: Two Variances Use sx2 to denote the larger variance. H0: σx2 = σy2 H1: σx2 ≠ σy2 H0: σx2 ≤ σy2 H1: σx2 > σy2 /2  F F Do not reject H0 Reject H0 Do not reject H0 Reject H0 rejection region for a two-tail test is: where sx2 is the larger of the two sample variances

Example: F Test You are a financial analyst for a brokerage firm. You want to compare dividend yields between stocks listed on the NYSE & NASDAQ. You collect the following data: NYSE NASDAQ Number 21 25 Mean 3.27 2.53 Std dev 1.30 1.16 Is there a difference in the variances between the NYSE & NASDAQ at the  = 0.10 level?

F Test: Example Solution Form the hypothesis test: H0: σx2 = σy2 (there is no difference between variances) H1: σx2 ≠ σy2 (there is a difference between variances) Find the F critical values for  = .10/2: Degrees of Freedom: Numerator (NYSE has the larger standard deviation): nx – 1 = 21 – 1 = 20 d.f. Denominator: ny – 1 = 25 – 1 = 24 d.f.

F Test: Example Solution The test statistic is: H0: σx2 = σy2 H1: σx2 ≠ σy2 /2 = .05 F Do not reject H0 Reject H0 F = 1.256 is not in the rejection region, so we do not reject H0 Conclusion: There is not sufficient evidence of a difference in variances at  = .10

Two-Sample Tests in EXCEL For paired samples (t test): Tools | data analysis… | t-test: paired two sample for means For independent samples: Independent sample Z test with variances known: Tools | data analysis | z-test: two sample for means For variances… F test for two variances: Tools | data analysis | F-test: two sample for variances

Two-Sample Tests in PHStat

Sample PHStat Output Input Output

Sample PHStat Output Input Output