Infrared absorption cross sections of cold propane in the low frequency region between 600 – 1300 cm-1. Wong, A.a, Hargreaves, R.J.b, Billinghurst, B.E.c,

Slides:



Advertisements
Similar presentations
R. S. RAM and P. F. BERNATH Department of Chemistry, University of York, Heslington, York YO10 5DD, UK. and Department of Chemistry, University of Arizona,
Advertisements

High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Yu. I. BARANOV and W. J. LAFFERTY Optical Technology Division Optical Technology Division National Institute of Standards and Technology, Gaithersburg,
Pacific Northwest National Laboratory The Ohio State University 20 June 2006 T. Masiello, T.J. Johnson and S.W. Sharpe Pacific Northwest National Laboratory.
Rotationally-resolved infrared spectroscopy of the polycyclic aromatic hydrocarbon pyrene (C 16 H 10 ) using a quantum cascade laser- based cavity ringdown.
QUANTITATIVE MEASUREMENT OF INTEGRATED BAND INTENSITIES OF BENZENE (C 6 H 6 ) VAPOR IN THE MID-INFRARED AT 278, 298 AND 323 K Curtis P. Rinsland NASA Langley.
Spectroscopy for Hot Super- Earth Exoplanets P. F. Bernath and M. Dulick Department of Chemistry & Biochemistry Old Dominion University, Norfolk, VA.
HIGH-RESOLUTION ANALYSIS OF VARIOUS PROPANE BANDS: MODELING OF TITAN'S INFRARED SPECTRUM J.-M. Flaud.
ACE Linelist Needs for the Atmospheric Chemistry Experiment Chris Boone and Peter Bernath Univ. of Waterloo, Waterloo, Ontario, Canada HITRAN 2006 Conference.
PRESSURE BROADENING AND SHIFT COEFFICIENTS FOR THE BAND OF 12 C 16 O 2 NEAR 6348 cm -1 D. CHRIS BENNER and V MALATHY DEVI Department of Physics,
QUANTITATIVE MEASUREMENT OF INTEGRATED BAND INTENSITIES OF BENZENE (C 6 H 6 ) VAPOR IN THE MID-INFRARED AT 278, 298 AND 323 K Curtis P. Rinsland NASA Langley.
Atmospheric Chemistry Experiment, ACE: Status and Spectroscopic Issues Peter Bernath, Nick Allen, Gonzalo Gonzalez Abad, Jeremy Harrison, Alex Brown, and.
9th Biennal HITRAN Conference Harvard-Smithsonian Center for Astrophysics June 26–28, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4.
Agnés Perrin Laboratoire Interuniversitaire des Systémes Atmosphériques (LISA), CNRS, Université Paris XII, Créteil C.Bray,
EXPERIMENTAL ABSORPTION SPECTRA OF HOT CH 4 IN THE PENTAD AND OCTAD REGION ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
THE ACE SATELLITE SOLAR SPECTRUM
IR EMISSION SPECTROSCOPY OF AMMONIA: LINELISTS AND ASSIGNMENTS. R. Hargreaves, P. F. Bernath Department of Chemistry, University of York, UK N. F. Zobov,
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
Experimental Energy Levels of HD 18 O and D 2 18 O S.N. MIKHAILENKO, O.V. NAUMENKO, S.A. TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute.
Global analysis of broadband rotation and vibration-rotation spectra of sulfur dicyanide Zbigniew Kisiel, a Manfred Winnewisser, b Brenda P. Winnewisser,
HIGH-RESOLUTION ABSORPTION CROSS SECTIONS OF C 2 H 6 AND C 3 H 8 AT LOW TEMPERATURES ROBERT J. HARGREAVES DANIEL J. FROHMAN
Jet Propulsion Laboratory California Institute of Technology The College of William and MaryUniversity of Lethbridge.
Self- and Air-Broadening, Shifts, and Line Mixing in the ν 2 Band of CH 4 M. A. H. Smith 1, D. Chris Benner 2, V. Malathy Devi 2, and A. Predoi-Cross 3.
Self- and air-broadened line shape parameters in the band of 12 CH 4 : cm -1 V. Malathy Devi Department of Physics The College of William.
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
61th Ohio State University Symposium on Molecular Spectroscopy June 19–23, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4 LINES IN THE.
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
New 12 C 2 H 2 measurements using synchrotron SOLEIL David Jacquemart, Nelly Lacome, Olivier Piralli 66th OSU international symposium on molecular spectroscopy.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
A COMPREHENSIVE INTENSITY STUDY OF THE 4 TORSIONAL BAND OF ETHANE J. NOROOZ OLIAEE, N. Moazzen-Ahmadi Institute for Quantum Science and Technology Department.
1 Atmospheric Radiation – Lecture 7 PHY Lecture 7 Thermal Radiation.
DIODE-LASER AND FOURIER-TRANSFORM SPECTROSCOPY OF 14 NH 3 AND 15 NH 3 IN THE NEAR-INFRARED (1.5 µm) Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL Laboratoire.
A new spectroscopic observatory in Créteil to measure atmospheric trace gases in solar occultation geometry C. Viatte, P. Chelin, M. Eremenko, C. Keim,
H 2 AND N 2 -BROADENED C 2 H 6 AND C 3 H 8 ABSORPTION CROSS SECTIONS ROBERT J. HARGREAVES a DOMINIQUE APPADOO b BRANT E. BILLINGHURST.
OSU International Symposium on Molecular Spectroscopy June 18 – 22, TF Infrared/Raman -- TF01, Tuesday, June 19, 2012.
69th Meeting - Champaign-Urbana, Illinois, 2014 FE11 1/12 JPL Progress Report Keeyoon Sung, Geoffrey C. Toon, Linda R. Brown Jet Propulsion Laboratory,
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
High resolution far-infrared spectra of thiophosgene with a synchrotron source: The 1, 5, 2 4 and bands A.R.W. McKellar National Research Council.
INTRACAVITY LASER SPECTRA OF METHANE 790 AND 861 nm BANDS AT LOW TEMPERATURES SADASIVAN SHAJI and JAMES J O’BRIEN Department of Chemistry & Biochemistry.
ROTATION-VIBRATIONAL ANALYSIS OF THE BANDS OF FORMALDEHYDE FALLING IN THE 3900 TO 5300 CM -1 REGION W.J. LAFFERTY Optical Technology Division NIST Gaithersburg,
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
EXPERIMENTAL TRANSMISSION SPECTRA OF HOT AMMONIA IN THE INFRARED Monday, June 22 nd 2015 ISMS 70 th Meeting Champaign, Illinois EXPERIMENTAL TRANSMISSION.
Atmospheric Chemistry Experiment (ACE): Organic Molecules from Orbit Peter Bernath Department of Chemistry, University of York Heslington, York, UK.
Synchrotron Far Infrared Spectroscopy : Higher resolution and longer wavelengths at the Canadian Light Source A.R.W. McKellar National Research Council.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
HOT EMISSION SPECTRA FOR ASTRONOMICAL APPLICATIONS: CH 4 & NH 3 R. Hargreaves, L. Michaux, G. Li, C. Beale, M. Irfan and P. F. Bernath 1 Departments of.
EXPERIMENTAL LINE LISTS OF HOT METHANE Image credit: Mark Garlick MONDAY 22 nd JUNE 2015 ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
N. Moazzen-Ahmadi, J. Norooz Oliaee
ABSORPTION CROSS-SECTIONS IN HITRAN2016: MAJOR DATABASE UPDATE FOR ATMOSPHERIC, INDUSTRIAL, AND CLIMATE APPLICATIONS ROMAN V KOCHANOV, IOULI E GORDON,
INFRARED CROSS SECTIONS OF HOT HYDROCARBONS
High resolution far-IR spectroscopy of HFC-134a at cold temperatures
Stephen J. Daunt, Robert Grzywacz
The Near-IR Spectrum of CH3D
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
Andy Wong Robert J. Hargreaves Peter F. Bernath Michaël Rey
NH3 measurements in the far-IR
First High Resolution IR Spectra of 2,2-D2-Propane The v20 (B1) A-Type Band Near cm-1. Determination of Ground and Upper State Constants Daniel.
ABSORPTION SPECTRA FOR THE 889 nm BAND OF METHANE DERIVED FROM INTRACAVITY LASER SPECTROSCOPY MEASUREMENTS MADE AS A FUNCTION OF LOW SAMPLE TEMPERATURES.
An accurate and complete empirical line list for water vapor
Fourier Transform Emission Spectroscopy of CoH and CoD
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
By Narayan Adhikari Charles Woodman
The far infrared spectrum of thiophosgene Analysis of the 2 and 4 fundamental bands at 500 cm-1 A.R.W. McKellar National Research Council of Canada,
EVALUATION OF GEISA CONTENTS
FIRST HIGH RESOLUTION IR SPECTRA OF 1-13C-PROPANE
THE ν9 (A1) B-TYPE BAND NEAR cm−1
Presentation transcript:

Infrared absorption cross sections of cold propane in the low frequency region between 600 – 1300 cm-1. Wong, A.a, Hargreaves, R.J.b, Billinghurst, B.E.c, Bernath, P.F.a aDepartment of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA bAtmospheric, Oceanic & Planetary Physics, Oxford University, Oxford, United Kingdom cEFC, Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada FA03

Outline Introduction Experimental Results Conclusions References Propane Atmospheric Earth Giant planets Spectroscopy of propane Absorption cross sections Experimental Canadian light source (CLS) Spectrometer and cell Conditions Results Data processing Cross sections Reference data Integrated areas Conclusions Future work References Acknowledgments

Why propane? www.nasa.gov

Why propane? Natural Oceans, volcanoes1 Microorganisms www.nasa.gov 1Etiope & Ciccioli 2009

Why propane? Natural Anthropogenic Oceans, volcanoes1 Microorganisms Biomass burning Oil and natural gas Combustion www.nasa.gov 1Etiope & Ciccioli 2009

Why propane? Natural Anthropogenic Tropospheric O3 Oceans, volcanoes1 Microorganisms Anthropogenic Biomass burning Oil and natural gas Combustion Tropospheric O3 Oxidation via ·OH2,3 Acetone and acetaldehyde Peroxyacetyl nitrate Catalyzed by NOx www.nasa.gov 1Etiope & Ciccioli 2009; 2Rosado-Reyes et al. 2007; 3Singh et al. 1994

Why propane? www.nasa.gov

Why propane? Hydrocarbons Photoionization of methane4 4De La Haye et al. 2008 www.nasa.gov

Why propane? Hydrocarbons Observations Photoionization of methane4 Abundances 4De La Haye et al. 2008 www.nasa.gov

Why propane? Hydrocarbons Observations Databases Photoionization of methane4 Observations Abundances Databases HITRAN5*, GEISA6, PNNL7 4De La Haye et al. 2008 5Rothman et al. 2013 6Jacquinet-Husson et al. 2016 7Sharpe et al. 2004 www.nasa.gov

Spectroscopy

Spectroscopy Equilibrium C2v symmetry 11 atoms 27 unique vibrational modes 7 vibrational levels <1000 cm-1 webbook.nist.gov

Spectroscopy Equilibrium C2v symmetry Hot bands 11 atoms Line density 27 unique vibrational modes 7 vibrational levels <1000 cm-1 Hot bands Line density Spectral complexity Perturbations webbook.nist.gov

Spectroscopy Equilibrium C2v symmetry Hot bands 11 atoms Line density 27 unique vibrational modes 7 vibrational levels <1000 cm-1 Hot bands Line density Spectral complexity Perturbations webbook.nist.gov 8Harrison & Bernath 2010

Spectroscopy Equilibrium C2v symmetry Hot bands Arduous analysis 11 atoms 27 unique vibrational modes 7 vibrational levels <1000 cm-1 Hot bands Line density Spectral complexity Perturbations Arduous analysis E.g. Perrin et al.9 9Perrin et al. 2015 webbook.nist.gov

Spectroscopy Equilibrium C2v symmetry Hot bands Arduous analysis 11 atoms 27 unique vibrational modes 7 vibrational levels <1000 cm-1 Hot bands Line density Spectral complexity Perturbations Arduous analysis E.g. Perrin et al.9 Absorption cross sections 9Perrin et al. 2015 webbook.nist.gov

Absorption cross sections 𝜎(𝜈,𝑇)=−𝜉 10 4 𝑘 𝐵 𝑇 𝑃𝑙 ln 𝜏(𝜈,𝑇) 8 s = Absorption cross section (cm2 molecule-1) n = Frequency (cm-1) T = Temperature (K) kB = Boltzmann constant (J K-1) P = Pressure (Pa) l = Optical path length (m) t = Transmittance x = Calibration factor 8Harrison & Bernath 2010

Absorption cross sections 𝜎(𝜈,𝑇)=−𝜉 10 4 𝑘 𝐵 𝑇 𝑃𝑙 ln 𝜏(𝜈,𝑇) 8 s = Absorption cross section (cm2 molecule-1) n = Frequency (cm-1) T = Temperature (K) kB = Boltzmann constant (J K-1) P = Pressure (Pa) l = Optical path length (m) t = Transmittance x = Calibration factor Physical parameters Pressure Optical path length Temperature 9Harrison & Bernath 2010

Absorption cross sections 𝜎(𝜈,𝑇)=−𝜉 10 4 𝑘 𝐵 𝑇 𝑃𝑙 ln 𝜏(𝜈,𝑇) 8 s = Absorption cross section (cm2 molecule-1) n = Frequency (cm-1) T = Temperature (K) kB = Boltzmann constant (J K-1) P = Pressure (Pa) l = Optical path length (m) t = Transmittance x = Calibration factor Physical parameters Pressure Optical path length Temperature Direct information Peak intensities Comparison 9Harrison & Bernath 2010

Absorption cross sections 𝜎(𝜈,𝑇)=−𝜉 10 4 𝑘 𝐵 𝑇 𝑃𝑙 ln 𝜏(𝜈,𝑇) 9 s = Absorption cross section (cm2 molecule-1) n = Frequency (cm-1) T = Temperature (K) kB = Boltzmann constant (J K-1) P = Pressure (Pa) l = Optical path length (m) t = Transmittance x = Calibration factor Physical parameters Pressure Optical path length Temperature Direct information Peak intensities Comparison Straightforward No transition assignment No fitting of molecular constants 9Harrison & Bernath 2010

Experimental Canadian Light Source Far-IR beamline Bruker IFS 125 spectrometer 2 m White-type cell Methanol cooled to 200 K

Experimental Canadian Light Source Far-IR beamline Bruker IFS 125 spectrometer 2 m White-type cell Methanol cooled to 200 K

Experimental Canadian Light Source 32 conditions Far-IR beamline Bruker IFS 125 spectrometer 2 m White-type cell Methanol cooled to 200 K 32 conditions Temperature: 298, 260, 230 and 200 K Pressure: Pure, 8*, 30* or 100* Torr *Total pressure Broadener: H2 or He Sample scans and backgrounds 300 each

Results – Data processing E.g. 0.54 Torr propane broadened to 8 Torr with H2 at 292 K OPUS 6.010 Record pairs of interferograms Fourier transform Blackman-Harris 3-Term apodization function Zero-fill factor of at least 8 Weighted averages Sample single channel Scaled background Calculate transmittance spectrum 10OPUS 2006

Results – Data processing E.g. 0.54 Torr propane broadened to 8 Torr with H2 at 292 K OPUS 6.010 Record pairs of interferograms Fourier transform Blackman-Harris 3-Term apodization function Zero-fill factor of at least 8 Weighted averages Sample single channel Scaled background Calculate transmittance spectrum Obtain absorption cross section 𝜎(𝜈,𝑇)=−𝜉 10 4 𝑘 𝐵 𝑇 𝑃𝑙 ln 𝜏(𝜈,𝑇) 9 Excel, MATLAB, Python … 10OPUS 2006

Results – Cross sections Pressure dependence Decreased peak intensities Broadening *near 700 cm-1 at 200 K P (Torr) Full-width half maximum (cm-1)* Resolution (cm-1) H2 He Pure 0.002 0.00096 8 0.010 0.005 30 0.035 0.029 100 0.10 0.096 0.040 11Wong et al. 2017

Results – Cross sections Pressure dependence Decreased peak intensities Broadening *near 700 cm-1 at 200 K Pseudo continuum 292 K P (Torr) Full-width half maximum (cm-1)* Resolution (cm-1) H2 He Pure 0.002 0.00096 8 0.010 0.005 30 0.035 0.029 100 0.10 0.096 0.040 11Wong et al. 2017

Results – Cross sections Temperature dependence Increased peak intensities Different populations Doppler width 11Wong et al. 2017

Results – Cross sections Temperature dependence Increased peak intensities Different populations Doppler width E.g. Total P(propane + H2) = 8 Torr 11Wong et al. 2017

Results – Reference data Pacific Northwest National Laboratory (PNNL)7 Propane broadened with N2 Warm temperatures 278, 298 and 323 K “Full” spectrum 600 – 6500 cm-1 7Sharpe et al. 2004

Results – Reference data Pacific Northwest National Laboratory (PNNL)7 Propane broadened with N2 Warm temperatures 278, 298 and 323 K “Full” spectrum 600 – 6500 cm-1 Conversion ppm-1 molecule-1 to cm2 molecule-1 𝐹= 𝑘 𝐵 𝑇𝑙𝑛(10) 10 4 0.101325 9.28697 × 10-16 T = 296 K 7Sharpe et al. 2004

Results – Integrated areas Area is retained Temperature and pressure Pseudo continuum

Results – Integrated areas Area is retained Temperature and pressure Pseudo continuum 𝑦 𝑥 𝜎 𝐶𝐿𝑆 𝑑𝜈≈ 𝑦 𝑥 𝜎 𝑃𝑁𝑁𝐿 𝑑𝜈 x = 680 cm-1 y = 970 cm-1 6.588×10-19 cm molecule-1 Within 10% Accuracy P and l

Results – Integrated areas T (K) Pure 8 Torr H2 30 Torr H2 100 Torr H2 P Peff 200 -- 0.200 0.198 0.576 0.613 230 0.238 0.226 0.231 0.763 0.820 1.220 1.215 260 0.307 0.286 0.438 0.389 0.798 0.827 1.097 1.080 292 0.329 0.317 0.535 0.506 0.869 1.300 1.271 Area is retained Temperature and pressure Pseudo continuum 𝑦 𝑥 𝜎 𝐶𝐿𝑆 𝑑𝜈≈ 𝑦 𝑥 𝜎 𝑃𝑁𝑁𝐿 𝑑𝜈 x = 680 cm-1 y = 970 cm-1 6.588×10-19 cm molecule-1 Within 10% Accuracy P and l T (K) Pure 8 Torr He 30 Torr He 100 Torr He P Peff 200 -- 0.201 0.197 0.568 0.556 1.200 1.238 230 0.240 0.239 0.232 0.224 0.800 0.859 1.264 260 0.304 0.315 0.443 0.426 0.786 0.730 1.101 1.115 292 0.345 0.296 0.546 0.559 0.868 0.855 1.303 1.286

Conclusions Synchrotron radiation Absorption cross sections Higher signal-to-noise-level Higher flux Absorption cross sections Far-IR region From 200 – 292 K Pure, 8 Torr, 30 Torr and 100 Torr Either H2 or He Validate accuracy PNNL database Integrated s(n, T)

Conclusions Synchrotron radiation Absorption cross sections Higher signal-to-noise-level Higher flux Absorption cross sections Far-IR region From 200 – 292 K Pure, 8 Torr, 30 Torr and 100 Torr Either H2 or He Validate accuracy PNNL database Integrated s(n, T) Publications J. Quant. Spectrosc. Radiat. Transfer, 201711 Mol. Astrophys., 201712 Current and future work Propane Even colder temperatures (150 K) Higher frequency region (3 mm) Other small hydrocarbons Ethane Propene

Acknowledgements Old Dominion University Dr. R.J. Hargreaves CLS Bernath Group Dr. R.J. Hargreaves Oxford University CLS Dr. B.E. Billinghurst

References 1Etiope, G., Ciccioli, P., Science, 2009, 323, 478. 2Rosado-Reyes, C.M., et al., J. Geophys. Res., 2007, 112, D14310. 3Singh, H.B., et al., J. Geophys. Res., 1994, 99, 1805. 4De La Haye, V., et al., Icarus, 2008, 197, 110. 5Rothman, L. S. et al., J. Quant. Spectrosc. Radiat. Transfer, 2013, 130, 4. 6Jacquinet-Husson, et al., J. Mol. Spectrosc., 2016, 327, 31. 7Sharpe, S.W., et al., Appl. Spectrosc., 2004, 58, 1452. 8Harrison, J.J., Bernath, P.F., J. Quant. Spectrosc. Radiat. Transfer, 2010, 111, 1282. 9Perrin, A., et al., J. Mol. Spectrosc., 2015, 315, 55. 10OPUS Version 6.0, Build: 6, 0, 72 (20060822) Copyright © Bruker Optik GmbH. 11Wong, A., et al., J. Quant. Spectrosc. Radiat. Transfer, 2017, 198, 141. 12Wong, A., et al., Mol. Astro., 2017, 8, 36.