WORK IN PROGRESS F C C Main Quadrupoles FCC week 2017

Slides:



Advertisements
Similar presentations
Superconducting Magnet Program S. Gourlay CERN March 11-12, Lawrence Berkeley National Laboratory IR Quad R&D Program LHC IR Upgrade Stephen A.
Advertisements

MQXF Quench Protection Analysis HiLumi workshop – KEK, Tsukuba Vittorio Marinozzi 11/18/2014.
Preliminary Design of Nb 3 Sn Quadrupoles for FCC-hh M. Karppinen CERN TE-MSC.
HL-LHC: UPDATE ON MAGNETS
E. Todesco PROPOSAL OF APERTURE FOR THE INNER TRIPLET E. Todesco CERN, Geneva Switzerland With relevant inputs from colleagues F. Cerutti, S. Fartoukh,
2 nd Joint HiLumi LHC – LARP Annual Meeting INFN Frascati – November 14 th to 16 th 2012 Helene Felice Paolo Ferracin LQ Mechanical Behavior Overview and.
Development of the EuCARD Nb 3 Sn Dipole Magnet FRESCA2 P. Ferracin, M. Devaux, M. Durante, P. Fazilleau, P. Fessia, P. Manil, A. Milanese, J. E. Munoz.
SC magnet developments at CEA/Saclay Maria Durante Hélène Felice CEA Saclay DSM/DAPNIA/SACM/LEAS.
11 T Nb3Sn Demonstrator Dipole R&D Strategy and Status
Triplet status and plans P. Ferracin, G. Ambrosio, M. Anerella, A. Ballarino, B. Bordini, F. Borgnolutti, R. Bossert, D. Cheng, D.R. Dietderich, B. Favrat,
MQXF Design and Conductor Requirements P. Ferracin MQXF Conductor Review November 5-6, 2014 CERN.
MQXF support structure An extension of LARP experience Helene Felice MQXF Design Review December 10 th to 12 th, 2014 CERN.
CERN Accelerator School Superconductivity for Accelerators Case study 1 Paolo Ferracin ( ) European Organization for Nuclear Research.
Subscale quadrupole (SQ) series Paolo Ferracin LARP DoE Review FNAL June 12-14, 2006.
GROUP C – Case study no.4 Dr. Nadezda BAGRETS (Karlsruhe Institute of Technology) Dr. Andrea CORNACCHINI (CERN EN Dept.) Mr. Miguel FERNANDES (CERN BE.
Magnet design, final parameters Paolo Ferracin and Attilio Milanese EuCARD ESAC review for the FRESCA2 dipole CERN March, 2012.
New options for the new D1 magnet Qingjin Xu
Dipole design at the 16 T frontier - Magnet R&D for a Future Circular Collider (FCC) at Fermilab Alexander Zlobin Fermilab.
CERN Accelerator School Superconductivity for Accelerators Case study 3 Paolo Ferracin ( ) European Organization for Nuclear Research.
ECC Clément Lorin – Maria Durante Acknowledgements: Fresca2 team.
Cosine-theta configurations for S.C. Dipole Massimo Sorbi on behalf of: INFN LASA & Genova Team Giovanni Bellomo, Pasquale Fabbricarore, Stefania Farinon,
DESIGN STUDIES IR Magnet Design P. Wanderer LARP Collaboration Meeting April 27, 2006.
Tiina Salmi and Antti Stenvall, Tampere University of technology, Finland FCCW2016 Roma, April 13 th, 2016 Quench protection of the 16T dipoles for the.
2 nd LARP / HiLumi Collaboration Mtg, May 9, 2012LHQ Goals and Status – G. Ambrosio 11 Quench Protection of Long Nb 3 Sn Quads Giorgio Ambrosio Fermilab.
Preliminary analysis of a 16 T sc dipole with cos-theta lay-out INFN team October 2015.
CERN, 11th November 2011 Hi-lumi meeting
16 T dipole in common coil configuration: mechanical design
Mechanical behavior of the EuroCirCol 16 T Block-type dipole magnet during a quench Junjie Zhao, Tiina Salmi, Antti stenvall, Clement Lorin 1.
Massimo Sorbi on behalf of INFN team:
TQS Overview and recent progress
Model magnet test results at FNAL
HO correctors update Massimo Sorbi and Marco Statera
TQS Structure Design and Modeling
MQXF Goals & Plans G. Ambrosio MQXF Conductor Review
16 T Cosq DIPOLE Mechanical Analysis
Summary of FCC Week – Magnets
Protection of FCC 16 T dipoles
Development of the Canted Cosine Theta Superconducting Magnet
Segreti, Lorin, Durante 11 July 2017
At ICFA Mini-Workshop on High Field Magnets for pp Colliders,
16 T Nb3Sn block dipole EuroCirCol
CERN-INFN, 23 Febbraio 2017 Stato del programma 16 T Davide Tommasini.
Cosq configuration - Mechanics
Plans for the PSI Canted-Dipole Program
Mechanical Modelling of the PSI CD1 Dipole
FRESCA2 Update on the dipole design and new calculations
EuroCirCol: 16T dipole based on common coils
Bore quench field vs. critical current density
Mechanical results on the double aperture Version V20ar
FCC-hh 16 T, 1.9 K INFN Team October 2015.
Protection Database Tool
the MDP High Field Dipole Demonstrator
Plan and status of the cost model
Block design status EuroCirCol
Introduction to the technical content The Q4 magnet (MQYY) for HL-LHC
16T Cosθ Dipole Configuration
SEMI-ANALYTIC APPROACHES TO MAGNET DESIGN
Large aperture Q4 M. Segreti, J.M. Rifflet
11T Dipole for the LHC Collimation upgrade
MQXF coil cross-section status
MQYY: superconducting Quadrupole magnet for Hl-lhc
CERN Accelerator School Superconductivity for Accelerators Case study 2 Paolo Ferracin European Organization for Nuclear Research.
P.Fabbricatore & S.Farinon
Large aperture Q4 M. Segreti, J.M. Rifflet
PROPOSAL OF APERTURE FOR THE INNER TRIPLET
Design of Nb3Sn IR quadrupoles with apertures larger than 120 mm
Design of Nb3Sn IR quadrupoles with apertures larger than 120 mm
FRESCA2 - Coils 1+2 scenario
Q4 development M. Segreti, J.M. Rifflet, E. Todesco
Cross-section of the 150 mm aperture case
Presentation transcript:

WORK IN PROGRESS F C C Main Quadrupoles FCC week 2017 Clement Lorin,Maria Durante,Helene Felice,Damien Simon - CEA Tiina Salmi – TUT Daniel Schoerling - CERN Berlin, 28 may 2017

EuroCirCol baseline WP2 G (T/m) Bpeak (T) Bore (mm) Length (units x m) MQ FCC 379.2* 12 50 750 x 6.0* MQ LHC 223 6.5 56 392 x 3.2 Number of apertures (-) 2 Inter-aperture spacing (mm) 250 194 Operating temperature (K) 1.9 Margin along the loadline (%) 14 19.7 Yoke OD max 800 452 *: Antoine Chance, WP2 leader, EuroCirCol

SC density / cable features Specifications of EuroCirCol project (16 T Nb3Sn dipole) Use of the cable of the cosine-theta* magnets Use of the demonstrator strand Φ = 0.7 mm ; cnc = 2.0 Strand (mm) 1.1 0.7 Nb of strands (-) 22 36 Bare cable width 13.2 13.3 bare mid-thickness 1.95 1.26 keystone angle (°) 0.5 Copper/nonCopper 0.8 2.1 *: V. Marinozzi & M. Sorbi (and all INFN ECC team)

*Todesco et al, Semi-analyticl approaches to magnet design, Wamsdo 2013 Rossi L., Todesco E. Electromagnetic design of superconducting quadrupoles, PRSTAB, 2006 30°

Dipole Low Field str&cable 401 T/m 473 tons (integrated grd) 86% LL 300 K Thotspot 2 possibilities -Cond qty reduction same gradient 420 tons & 399 T/m -Gradient increase same 2D cond qty 412 T/m & 460 tons 30°

4 layers designs 6 layers designs

Dipole High Field str&cable 367 T/m 530 tons 75% LL 350 K Thotspot 2 possibilities -Cond qty reduction same gradient -Gradient increase same 2D cond qty 412 T/m & 472 tons

Design emag Quantity v20ar Unit strand diameter 0.7 mm nb of strands 36 N/A width 13.3 average thickness 1.204 – 1.32 Cu/nonCu 2.1 Inom 12285 A Bpeak 12.12 T LL margin (1.9 K) 14.0 % Inductance diff. (2 ap) 17.9 mH/m Stored energy (2 ap) 1397 kJ/m Nb of turns 56 = 9+12+16+19 - F_/_ & F // (per ½-coil) 3.526* & 1.579 MN/m Hotspot 300 K Midplane shim 0.3 I/Ic max 0.61 Conductor area (2 ap) 124.2 cm² 750 x 6.0 x 8.7 weight 500 (dip ~7000 ) tons *0.55+0.8+1.1+1.1 MN/m per layer

Design emag Field quality beam injection nominal beam injection

Meca design Single aperture model, so far 32 mm thick shell 500 µm ← [Clement Lorin – Helene Felice - Damien Simon] Single aperture model, so far 32 mm thick shell 500 µm ← Ryoke = 275 mm Contacts/symmetry: sliding; 0.2 friction glued: coils with pole and the first 2 layers/ the last 2 layers

Coil stress v4 Contact at 105% σ von Mises σtheta 68 MPa -78 MPa After key insertion 420 T/m central gradient 105 % nominal 174 MPa -182 MPa -8 MPa +72 MPa 4.2/1.8 K 156 MPa -156 MPa 420 T/m

Meca design After key insertion 4.2/1.8 K 420 T/m Pole - Titanium 246 MPa 462 MPa 305 MPa 127 MPa 243 MPa 245 MPa Shell - Aluminum

Meca design Iron – Pad After key insertion 4.2/1.8 K 420 T/m Sigma von Mises 300 MPa 667 MPa 672 MPa Sigma I - tension 264 MPa 267 MPa

Meca design Iron – Pad After key insertion 4.2/1.8 K 420 T/m Sigma von Mises 223 MPa 428 MPa 460 MPa Sigma I - tension 77 MPa 73 MPa

Protection design [Damien Simon -CEA] Temperature: Everything quenched after 40 ms (validation+ heater delay): worst case - > 313 K (Tiina’s spreadsheet: 300 K) Voltage: less than 1.2 kV (600 V max) vgnd_max [V] time [s] vgnd per blocks

Conclusion Encouraging preliminary results:Emag-Mecha-Protection:ok with 250 mm interbeam quad at 400 T/m (Emag 2-in-1 and mechanics 1-in-1) Emag, room for improvement: high cnc -> keystone = 0.8° (only two wedges left?) cnc is reduced: 2.1 -> 1.8 (optimized design- no grading) Mechanics, still margin for optimization: get closer to reality (holes for assembly) adding bladder steps go to a 2-in-1 config!